Rich pickings

11th September 1998 at 01:00
James Williams assess the lessons that can be learned from two investigative science competitions.

Science pupils love practical work. They cannot wait to use a Bunsen or mix chemicals in test tubes. So any opportunity to enter their best science investigation will be greeted enthusiastically. This year, the Spotlight Scientist of the Year awards scheme, run by the publisher Stanley Thornes with the Association for Science Education, drew more than 1,500 entries.

But just what can we learn from such a rich collection? Quite a lot - every year Stanley Thornes puts together a number of lessons, practical hints and tips on investigations in science as a free resource for all key stage 3 teachers. This year it will produce a resource pack on the individual skills pupils need to complete whole investigations.

When I helped judge the competition this year, I lost count of the number of times the insulation properties of materials, making paper helicopters and dissolving substances in water turned up. But sometimes an entry stood out. An investigation into left and right brain dominance showed clearly that the student had sought to apply scientific techniques to a problem he found interesting and to which he sought a personal answer. It was the sort of high-quality investigation we would all like to see from our most able pupils - not just at key stage 3 but for GCSE as well. Others were sadly lacking in both scientific technique and understanding of basic science concepts.

Many entries were simply repeats of investigations the pupils had done in their primary schools. One entry in particular stands out - for the wrong reason. When asked what the pupil thought would happen in her investigation and why, she replied that what happened when she did it in primary probably hadn't changed since then.

We are becoming complacent at key stage 3: we no longer seem to have many creative investigations set as practical exercises for our pupils. But this is not a consequence of teachers blindly following a published scheme - it is more a result of teachers not appreciating just what pupils are doing at key stage 2 - and how hard some of them are being pushed at primary level.

One promising entry looked at the properties of some of the latest materials - such as Kevlar and Gortex - used by mountaineers, but the investigation slipped back into foil, bubble wrap and corrugated cardboard. An uninspiring end to a promising start.

The obvious lack of investigative skills was matched with a lack of graphing and evaluating skills. Lines of best fit were plotted incorrectly, and the evaluation of method and of the evidence obtained was often poor. In the best investigations, pupils were able to gather enough readings, select an appropriate method of presentation, and accurately plot their readings and recognise any pattern that the results followed.

A competition is not perhaps the right forum to make judgments about the state of investigative science nationally across key stage 3. The criteria for assessing the investigations were, however, based on the national curriculum criteria and the teacher's own assessments of students' work. In this respect, they give a good indication of the quality and variety of work undertaken nationally. Good quality investigations generally meant that somewhere in the pile there were other good quality investigations from the same school. Unfortunately, the reverse was also true.

Investigations in science have always been the subject of intense debate. The model supplied by the original national curriculum Order was far from adequate, and our current model still has its problems. But scrutinising such a large database of work does provide key lessons. First, teachers must look beyond the "safe" investigations they have done year in and year out. Key stage 2 is catching up and we need to move on at key stage 3 to prevent our pupils becoming bored. The use of secondary resources, such as textbooks, needs to be a taught skill, and pupils need to know how to incorporate this evidence into their own investigations. And key mathematical skills associated with graphing must figure more highly in science training.

But despite the grumbles, some aspects were comprehensively covered. For example, the concept of the "fair test", prominent in the pupils' key stage 2 science, had transferred to KS3 well. This reinforces the notion that other skills learned at KS2 will also transfer to KS3, provided we can offer new, creative investigations as a context in which they can use those skills.

The Spotlight Scientist of the Year awards scheme is open to 11 to 14-year-olds. Closing date for next year's entries is June 4, 1999. Judging takes place on June 16-17. Further information from Caroline McGrath, ASE, Runnymede Centre, Chertsey Road, Addlestone, Surrey KT15 2EP. Tel: 01932 567243James Williams, a former head of science at a secondary school, is alecturer in science education at the School of Education, Brunel University.

Log-in as an existing print or digital subscriber

Forgotten your subscriber ID?


To access this content and the full TES archive, subscribe now.

View subscriber offers


Get TES online and delivered to your door – for less than the price of a coffee

Save 33% off the cover price with this great subscription offer. Every copy delivered to your door by first-class post, plus full access to TES online and the TES app for just £1.90 per week.
Subscribers also enjoy a range of fantastic offers and benefits worth over £270:

  • Discounts off TES Institute courses
  • Access over 200,000 articles in the TES online archive
  • Free Tastecard membership worth £79.99
  • Discounts with Zipcar,, Virgin Wines and other partners
Order your low-cost subscription today