Rich pickings

11th September 1998 at 01:00
James Williams assess the lessons that can be learned from two investigative science competitions.

Science pupils love practical work. They cannot wait to use a Bunsen or mix chemicals in test tubes. So any opportunity to enter their best science investigation will be greeted enthusiastically. This year, the Spotlight Scientist of the Year awards scheme, run by the publisher Stanley Thornes with the Association for Science Education, drew more than 1,500 entries.

But just what can we learn from such a rich collection? Quite a lot - every year Stanley Thornes puts together a number of lessons, practical hints and tips on investigations in science as a free resource for all key stage 3 teachers. This year it will produce a resource pack on the individual skills pupils need to complete whole investigations.

When I helped judge the competition this year, I lost count of the number of times the insulation properties of materials, making paper helicopters and dissolving substances in water turned up. But sometimes an entry stood out. An investigation into left and right brain dominance showed clearly that the student had sought to apply scientific techniques to a problem he found interesting and to which he sought a personal answer. It was the sort of high-quality investigation we would all like to see from our most able pupils - not just at key stage 3 but for GCSE as well. Others were sadly lacking in both scientific technique and understanding of basic science concepts.

Many entries were simply repeats of investigations the pupils had done in their primary schools. One entry in particular stands out - for the wrong reason. When asked what the pupil thought would happen in her investigation and why, she replied that what happened when she did it in primary probably hadn't changed since then.

We are becoming complacent at key stage 3: we no longer seem to have many creative investigations set as practical exercises for our pupils. But this is not a consequence of teachers blindly following a published scheme - it is more a result of teachers not appreciating just what pupils are doing at key stage 2 - and how hard some of them are being pushed at primary level.

One promising entry looked at the properties of some of the latest materials - such as Kevlar and Gortex - used by mountaineers, but the investigation slipped back into foil, bubble wrap and corrugated cardboard. An uninspiring end to a promising start.

The obvious lack of investigative skills was matched with a lack of graphing and evaluating skills. Lines of best fit were plotted incorrectly, and the evaluation of method and of the evidence obtained was often poor. In the best investigations, pupils were able to gather enough readings, select an appropriate method of presentation, and accurately plot their readings and recognise any pattern that the results followed.

A competition is not perhaps the right forum to make judgments about the state of investigative science nationally across key stage 3. The criteria for assessing the investigations were, however, based on the national curriculum criteria and the teacher's own assessments of students' work. In this respect, they give a good indication of the quality and variety of work undertaken nationally. Good quality investigations generally meant that somewhere in the pile there were other good quality investigations from the same school. Unfortunately, the reverse was also true.

Investigations in science have always been the subject of intense debate. The model supplied by the original national curriculum Order was far from adequate, and our current model still has its problems. But scrutinising such a large database of work does provide key lessons. First, teachers must look beyond the "safe" investigations they have done year in and year out. Key stage 2 is catching up and we need to move on at key stage 3 to prevent our pupils becoming bored. The use of secondary resources, such as textbooks, needs to be a taught skill, and pupils need to know how to incorporate this evidence into their own investigations. And key mathematical skills associated with graphing must figure more highly in science training.

But despite the grumbles, some aspects were comprehensively covered. For example, the concept of the "fair test", prominent in the pupils' key stage 2 science, had transferred to KS3 well. This reinforces the notion that other skills learned at KS2 will also transfer to KS3, provided we can offer new, creative investigations as a context in which they can use those skills.

The Spotlight Scientist of the Year awards scheme is open to 11 to 14-year-olds. Closing date for next year's entries is June 4, 1999. Judging takes place on June 16-17. Further information from Caroline McGrath, ASE, Runnymede Centre, Chertsey Road, Addlestone, Surrey KT15 2EP. Tel: 01932 567243James Williams, a former head of science at a secondary school, is alecturer in science education at the School of Education, Brunel University.

Subscribe to get access to the content on this page.

If you are already a Tes/ Tes Scotland subscriber please log in with your username or email address to get full access to our back issues, CPD library and membership plus page.

Not a subscriber? Find out more about our subscription offers.
Subscribe now
Existing subscriber?
Enter subscription number


The guide by your side – ensuring you are always up to date with the latest in education.

Get Tes magazine online and delivered to your door. Stay up to date with the latest research, teacher innovation and insight, plus classroom tips and techniques with a Tes magazine subscription.
With a Tes magazine subscription you get exclusive access to our CPD library. Including our New Teachers’ special for NQTS, Ed Tech, How to Get a Job, Trip Planner, Ed Biz Special and all Tes back issues.

Subscribe now