Hero image

GJHeducation's Shop

Average Rating4.50
(based on 904 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1092k+Views

1887k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Evidence for Evolution
GJHeducationGJHeducation

Evidence for Evolution

(1)
A detailed lesson presentation (37 slides) and associated worksheets that looks at the different pieces of evidence that scientists use to support evolution and discusses how these support the theory. The lesson begins by challenging students to decide which piece of evidence is the key piece in supporting evolution (fossils). Students will then have to arrange a number of statements to describe how a fossil is formed. Students are introduced to the fossil record and questions are used to check that they understand where the oldest fossils would be found. Moving forwards, students are given three pieces of evidence that would be observed in the fossil record and they are challenged to explain how each of these supports the theory of evolution. Quick competitions are then used to get the students to see some extinct organisms in the Dodo and Woolly Mammoth and again they are questioned on how extinct animals support the theory of evolution. Further evidence in rapid changes in species and molecular comparison is discussed. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included.
AQA A-level Biology REVISION LESSONS
GJHeducationGJHeducation

AQA A-level Biology REVISION LESSONS

8 Resources
This bundle of 8 revision lessons covers all of the topics on the AQA A-level Biology specification: Topic 1: Biological molecules Topic 2: Cells Topic 3: Organisms exchange substances with their environment Topic 4: Genetic information, variation and relationships between organisms Topic 5: Energy transfers in and between organisms Topic 6: Organisms respond to changes in their internal and external environments Topic 7: Genetics, populations, evolution and ecosystems Topic 8: The control of gene expression These lessons use a range of exam questions, quick tasks and quiz competitions to motivate and engage the students whilst they assess their understanding of the different topics and evaluate which areas of the specification will require their further attention. These lessons can be used for revision at the end of the topic, in the lead up to mocks or in the lead up to the actual exams.
OCR A-level Biology A PAPER 1 REVISION (Biological processes)
GJHeducationGJHeducation

OCR A-level Biology A PAPER 1 REVISION (Biological processes)

(1)
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics. The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention: Monosaccharides, disaccharides and polysaccharides Glycogen and starch as stores and providers of energy The homeostatic control of blood glucose concentration Osmoregulation Lipids Ultrafiltration and selective reabsorption Diabetes mellitus Voluntary and involuntary muscle The autonomic control of heart rate The organisation of the nervous system The gross structure of the human heart Haemoglobin and the Bohr shift Bonding The ultrastructure of plant cells Cyclic vs non-cyclic photophosphorylation Oxidative phosphorylation Anaerobic respiration in eukaryotes Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied. If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
The brain (AQA GCSE Biology)
GJHeducationGJHeducation

The brain (AQA GCSE Biology)

(1)
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer. The following content is covered in this lesson: The functions of the cerebral cortex, medulla and cerebellum Identification of the regions of the brain on an external and internal diagram The early use of stroke victims to identify functions The key details of the MRI scanning technique The difficulties of diagnosing and treating brain disorders and disease As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
AQA AS Biology REVISION LESSONS
GJHeducationGJHeducation

AQA AS Biology REVISION LESSONS

4 Resources
This bundle of 4 revision lessons covers the content in topics 1 - 4 of the AQA A-level Biology specification that are taught during year 12 (AS) of the two-year course. Each of the lessons has been designed to include a range of exam questions, differentiated tasks and quiz competitions that will motivate the students whilst they evaluate their understanding of the different sub-topics. Helpful hints are given throughout the lesson to aid the students in structuring their answers and the mathematical elements of the course are constantly challenged as well. The 4 topics covered by this bundle are: Topic 1:Biological molecules Topic 2: Cells Topic 3: Organisms exchange substances with their environment Topic 4: Genetic information, variation and relationships between organisms
Competition and Interdependence
GJHeducationGJHeducation

Competition and Interdependence

(0)
A detailed and engaging lesson presentation (52 slides) and accompanying worksheet that looks at competition between organisms and the different types of relationships that exist as a result of this interaction. The lesson begins by looking at the meaning of the biological term, "competition", and then introduces this when it occurs between the same species and different species. Students are challenged to consider the different resources that animals compete for before an activity based competition is used to get them to recognise how this competition can cause changes to the population size. Moving forwards, students will meet the three main types of ecological relationship and look at them in greater detail, with predation being a main focus. There are regular progress checks throughout the lesson (with displayed answers) so that students can assess their understanding. This lesson has been designed for GCSE students but can be used with more-able KS3 students who are looking at ecosystems and the relationships that exist within them
Genetic fingerprinting (AQA A-level Biology)
GJHeducationGJHeducation

Genetic fingerprinting (AQA A-level Biology)

(0)
This fully-resourced lesson explains how genetic fingerprinting can be used to analyse DNA fragments and explores its applications in forensic science and medical diagnosis. The engaging and detailed PowerPoint and accompanying resource have been written to cover all of point 8.4.3 of the AQA A-level Biology specification Each step of the genetic fingerprinting process is covered and time is taken to ensure that key details are understood. Students will be introduced to VNTRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR and restriction enzymes are discussed and students are challenged on their knowledge of this process and these substances as they were encountered in a previous sub-topic. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in topic 8 as well as those from topic 4 where DNA, RNA and protein synthesis were introduced.
Populations in ecosystems (AQA A-level Biology)
GJHeducationGJHeducation

Populations in ecosystems (AQA A-level Biology)

(1)
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
AQA A-level Biology Topic 7: Genetics, populations, evolution and ecosystems
GJHeducationGJHeducation

AQA A-level Biology Topic 7: Genetics, populations, evolution and ecosystems

15 Resources
This bundle contains 15 fully-resourced and detailed lessons that have been designed to cover the content of topic 7 of the AQA A-level Biology specification which concerns genetics, populations, evolution and ecosystems. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The use of genetic terminology The inheritance of one or two genes in monohybrid and dihybrid crosses Codominant and multiple alleles The inheritance of sex-linked characteristics Autosomal linkage Epistasis as a gene interaction The use of the chi-squared test Calculating allele frequencies using the Hardy-Weinberg principle Causes of phenotypic variation Stabilising, directional and disruptive selection Genetic drift Allopatric and sympatric speciation Species, populations, communities and ecosystems Factors affecting the populations in ecosystems Estimating the size of a population using randomly placed quadrats, transects and the mark-release-recapture method Conservation of habitats frequently involves the management of succession This is one of the 8 topics which have to be covered over the length of the 2 year course and therefore it is expected that the teaching time for this bundle will be in excess of 2 months If you want to see the quality of the lessons before purchasing then the lessons on codominant and multiple alleles, epistasis and phenotypic variation are free resources to download
Meiosis (AQA A-level Biology)
GJHeducationGJHeducation

Meiosis (AQA A-level Biology)

(0)
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations. Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver
OCR GCSE Biology Module B5 REVISION
GJHeducationGJHeducation

OCR GCSE Biology Module B5 REVISION

(0)
An engaging lesson presentation (61 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B5 (Genes, inheritance and selection) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Sexual and asexual reproduction Meiosis Dominant and recessive alleles Genetic crosses The history of genetics Natural selection Classification systems Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" and “Which Scientist is hidden?” whilst crucially being able to recognise those areas which need further attention
Topic 2: Cells (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2: Cells (AQA A-level Biology)

19 Resources
This bundle contains 19 PowerPoint lessons which are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification: Structure and function of the organelles in eukaryotic cells The specialised cells in complex, multicellular organisms The structure of prokaryotic cells The structure of viruses which are acellular and non-living The principles and limitations of optical, transmission electron and scanning electron microscopes Measuring the size of an object under an optical microscope Use of the magnification formula The behaviour of chromosomes during the stages of the cell cycle Binary fission The basic structure of cell membranes The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol Simple diffusion Facilitated diffusion Osmosis, explained in terms of water potential The role of carrier proteins and the hydrolysis of ATP in active transport Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum Recognition of different cells by the immune system The identification of pathogens from antigens The phagocytosis of pathogens The cellular response involving T lymphocytes The humoral response involving the production of antibodies by plasma cells The structure of an antibody The roles of plasma cells and memory cells in the primary and secondary immune response The use of vaccines to protect populations The differences between active and passive immunity The structure of the human immunodeficiency virus and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, microscopes, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free.
Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)

9 Resources
This lesson bundle contains 9 lesson PowerPoints and their accompanying resources which have been intricately planned to deliver the detailed content of topic 6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and to make links to the 5 previously covered topics. In addition to the detailed content, each lesson contains exam-style questions with mark schemes embedded into the PowerPoint, differentiated tasks, guided discussion points and quick quiz competitions to introduce key terms and values in a fun and memorable way. The following specification points are covered by the lessons in this bundle: DNA can be amplified using the PCR Comparing the structure of bacteria and viruses Understand how Mycobacterium tuberculosis and human immunodeficiency virus infact human cells The non-specific responses of the body to infection The roles of antigens and antibodies in the body’s immune response The differences in the roles of the B and T cells in the body’s immune response Understand how one gene can give rise to more than one protein The development of immunity The major routes that pathogens may take when entering the body The role of barriers in protecting the body from infection The difference between bacteriostatic and bactericidal antibiotics If you would like to sample the quality of the lessons in this bundle, then download the immune response and post-transcriptional changes lessons as these have been uploaded for free
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
Topic B4: Community level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B4: Community level systems (OCR Gateway A GCSE Biology)

7 Resources
This bundle of 7 lessons covers the majority of content in Topic B4(Community-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: Ecosystems Abiotic and biotic factors Competition and interdependence Efficiency of biomass transfer The Carbon cycle The Nitrogen cycle Decomposers All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Anaerobic respiration - GCSE
GJHeducationGJHeducation

Anaerobic respiration - GCSE

(0)
A fully- resourced lesson which looks at the chemical reaction that is anaerobic respiration and ensures that students can understand why this form of respiration can only be used for short periods of time. The lesson includes an engaging lesson presentation (39 slides), a newspaper article and application questions. The lesson begins by challenging the students to recall information about aerobic respiration to recognise that the sole reactant of anaerobic respiration is glucose. A newspaper article about two atheletes from the 10000m race has been written to challenge the students to recognise why one of the athletes wouldnt be able to compete again in the near future whilst the other could. As a result, students will be introduced to lactic acid and will learn how this poisonous substance prevents muscle contraction and causes cramps. Time is taken to ensure that students are familiar with ATP and specifically that they recognise that a much lower yield is produced in this type of respiration. A perfect opportunity is taken to get the students to carry out a mathematical calculation to compare the yields. Oxygen debt is discussed and related back to the original newspaper article. Finally, anaerobic respiration in plants and yeast is considered in terms of fermentation and the word and symbol equation is written so that it can be compared to those from animals. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students but could be used with higher ability KS3 students or A-level students who want a recap before covering the topic in greater detail on their course.
Image, actual and magnification questions
GJHeducationGJHeducation

Image, actual and magnification questions

(3)
A series of 5 exam questions that challenge students to work out the actual size of a section as seen under a microscope or the magnification. These questions will test their ability to convert between measurements and give answers in micrometers. These questions are suitable for GCSE and A-level students
Nucleotides (OCR A-level Biology)
GJHeducationGJHeducation

Nucleotides (OCR A-level Biology)

(1)
This detailed lesson describes the structure of a nucleotide and a phosphorylated nucleotide and explains how polynucleotides are synthesised and broken down. The engaging PowerPoint has been designed to cover points [a], [b] and [c] of module 2.1.3 as detailed in the OCR A-level Biology A specification and links are made throughout to earlier topics such as biological molecules. Students were introduced to the term monomer and nucleotide in the previous module, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ADP and ATP as phosphorylated nucleotides and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
The Link Reaction (OCR A-level Biology)
GJHeducationGJHeducation

The Link Reaction (OCR A-level Biology)

(0)
This clear and concise lesson covers the Link reaction and its site in the cell as detailed in point 5.2.2 (d) of the OCR A-level Biology A specification. The PowerPoint explains how the product of glycolysis, pyruvate, is decarboxylated and dehydrogenated and combined with coenzyme A to form acetyl coenzyme A which will then enter the Krebs cycle. The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.