Hero image

SWiftScience's Shop

Average Rating4.26
(based on 750 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

620Uploads

774k+Views

452k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Reaction Profiles & Bond Energy Calculations
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reaction Profiles & Bond Energy Calculations

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided. Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles. The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided. Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint. The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided. Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work. The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 Science Project
SWiftScienceSWiftScience

KS3 Science Project

(2)
PowerPoint and task cards aimed at a KS3 class (initially planned for Year 9) to complete a poster, written assignment and a model for a specific area of Science to present in a Science Fair. For each of the task cards a detailed list of requirements for each part of the project is included, with ideas for extension work to earn more points and homework ideas as well. I used this resource straight after my students had completed their end of year test as a fun and engaging activity, when complete pupils presented their projects to the class and I awarded certificates for best written assignment, best poster, best model and best overall project.
NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Infection & Response' SoW for the higher tier. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of this lesson is a recap on the plant diseases students should have already covered within the 'infection & response' unit - rose black stop and tobacco mosaic virus. Plants will then be asked to come up with a brainstorm of the symptoms plants may exhibit when they are diseased. Once pupils have discussed this and tried to come up with some ideas you can reveal some of the common symptoms on the PowerPoint slide, along with images and examples. The next slide looks at the ways in which plant diseases can be diagnosed, from gardening manuals to monoclonal antibody testing kits. The next activity focuses on the role of certain minerals in the growth and development of plants, firstly students will draw a table in their book and then they will given a slip of information about one of the mineral ions - nitrates, magnesium or potassium. Pupils will need to walk around the room or swap these slips of paper with people on the same table as them to complete the table, they can then assess their work. The final part of the lesson focuses on plant defence responses, firstly pupils will be shown some diagrams of plants and their defence methods and will be asked to think > pair > share the potential ways plants can defend against disease. Pupils will then be given a card sort with different plant defence mechanisms, students need to sort these into three different categories - physical barrier, chemical barrier, defence against herbivore. Once completed pupils can then assess their work using the answers provided. The final task is an exam-style question on what they have learnt that lesson, pupils of higher ability may want to complete these questions in silence at the backs of their book. Pupils can then self or peer-assess their work. Plenary activity is to write 3 key words, 2 facts and 1 question about what pupils have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Homeostasis' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Homeostasis' lessons

12 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Homeostasis’ unit for the NEW AQA Biology Specification. Lessons include: 1. Principles of homeostasis 2. The human nervous system 3. Reflex actions 4. The endocrine system 5. The control of blood glucose levels 6. Treating diabetes 7. The role of negative feedback 8. Human reproduction 9. The menstrual cycle 10. Controlling fertility 11. Infertility treatments 12. REQUIRED PRACTICAL: Reaction Time The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) - The menstrual cycle
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) - The menstrual cycle

(8)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished. Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. **For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams**. To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation. The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle
SWiftScienceSWiftScience

NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle

7 Resources
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification. Lessons include: Rates of reaction Reversible reactions Rate of reaction: The effect of catalysts Rate of reaction: The effect of concentration & pressure Dynamic equilibrium & altering conditions Collision Theory: The effect of temperature & surface area. The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons

10 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organic Chemistry’ unit for the NEW AQA Chemistry Specification. Lessons include: Alcohols, carboxylic acids and esters. Complete & incomplete combustion Cracking hydrocarbons Fractional distillation Hydrocarbons Natural polymers & DNA Polymerisation Reactions of alkenes The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Energy Stores & Transfers
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy Stores & Transfers

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy. The lesson begins with an introduction to the law of the conservation of energy, students are told that energy cannot be created or destroyed but it can be stored and transferred. Next, students are introduced to the five main energy stores, students are asked to match the correct names to the photos displayed. This task can then be self-assessed using the mark scheme provided. Next, students are introduced to the ways in which energy can be transferred - via light waves, sound waves and electricity. They will be shown an energy transfer diagram, depicting the energy transfers which take place within a torch. Once students have seen the complete diagram, they will then have a go at completing it themselves, using the statements provided. This task can the be marked against the mark scheme provided. Students will then complete two further energy diagrams to display the energy transfers taking place within a candle and TV. The answers to this task are also included in the PowerPoint presentation so students can self-assess their work using the mark scheme provided. Lastly, students will complete an investigation into the height a ball bounces back up to after it has been dropped from a height. Students will work in groups of three, following the instructions provided on the PowerPoint to complete the results table provided. Students will then need to answer a set of questions using the data they collected from the investigation. This can be self-assessed using the mark scheme provided. The plenary task requires students to complete one of the sentence starters, to summarise what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - The eye HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - The eye HT

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found. Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided. The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed. The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided. The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers. Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain. Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work. The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember. The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided. The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Volume of gases HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Volume of gases HT

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for the higher tier GCSE chemistry students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students learning how to calculate the number of moles of a gas when you know the molar gas volume. Students will then work their way through a set of questions using this calculation, for latter questions students will need to rearrange the equation. This work can then be assessed using the answers provided in the PowerPoint presentation. The next part of the lesson focuses on calculating the masses of gaseous reactants and products, firstly students are shown a worked example. The next task is for pupils to watch a video, using which they should answer a set of questions. Once this task has been completed students shoudl mark their work using the answers provided. Using the formula they have learnt whilst watching the video, they should now complete a set of questions on a specific chemical reaction - this required students to calculate the volume of gases produced or the mass of a reactant needed to produce a certain amount of a gas product. This work can be self-assessed using the answers provided in the PowerPoint presentation. The next task is a further set of problems requiring students to calculate the volume of gaseous reactants or products given a balanced symbol equation for a chemical reaction. The last task requires pupils to come up with 4 exam questions on the topic of gas volumes, they should also include a mark scheme for each of the questions. Once they have competed their questions they should swap with the person next to them and complete their partners questions, these can be self or peer-assessed using the mark schemes they have written. The plenary task is for pupils to write a WhatsApp message to their friends to tell them what they have learnt about this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution ’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to inherited disorders, particularly the two examples students will need to learn about - polydactyly and cystic fibrosis. Pupils will then be given information on either of these two disorders and will be asked to complete a fact file on the one they have been given using a set of criteria provided. Once they have completed one of the fact files they will need to pair up with someone who did the other fact file to share information. Pupils will then be given further information about the inheritance of these disorders and whether it is controlled by a dominant or recessive allele. Pupils will need to draw genetic diagrams for each of the disorders given a set of example parent genotypes, and work out the probability of the offspring inheriting the condition. The next part of the lesson focuses on embryo screening, firstly pupils are introduced to the two ways in which embryos can be screened for genetic conditions - amniocentesis & chorionic villus sampling. The next task pupils will need to think > pair > share ways in which these two methods which be controversial, identifying the positive and negative effects on the baby and family. For the final activity pupils will be given a set of opinion cards in groups, they will need to read the viewpoints, discuss as a group and write a short summary paragraph on their opinion of genetic screening in embryos. The plenary task is for pupils to write three summary sentences of what they have learnt this lesson using as many key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Antibiotic Resistance
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Antibiotic Resistance

(1)
This is a resource aimed at the NEW AQA GCSE Biology specification, developed to meet learning outcomes within the 'Infection & Response' unit. This lesson is part of a 12 lesson bundle for the NEW 'Infection & Response' Unit, found in my TES shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by describing the process by which a bacteria may become resistant to an antibiotic. Pupils will then watch a storyboard animation which demonstrates this process visually. Pupils can then use this animation to create their own storyboard, including diagrams and captions, to represent the process of natural selection in bacteria which leads to antibiotic resistance. The focus of the lesson is then on MRSA, a few real-life headlines are given as an example of an antibiotic resistant bacteria. Pupils will brainstorm what sorts of methods hospitals employ to reduce the spread of such 'super bugs'. The final activity is for pupils to completed questions on antibiotic resistance and how to prevent the spread of antibiotic resistant bacteria such as MRSA. The mark scheme for the questions are included on the Power Point presentation for students to mark their own work or peer-assess. The plenary is a recap on the learning outcomes, pupils will need to assess whether they are R/A/G.
NEW AQA GCSE Trilogy (2016) Biology – Adaptations
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – Adaptations

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with students completing a think > pair > share on the types of environments in which organisms live around the world. After a short discussion with the class about the sorts of environments they are aware of, you can move the PowerPoint slide on to identify the types of biomes present on Earth. The next activity is a copy and complete activity on survival and reproduction as a recap, after pupils have completed this task they can self-assess their work using the answers provided. Next pupils will be introduced to adaptations, pupils will then watch a video on adaptations and answer questions using the information provided. Once they have completed this task they can mark their work using the answers provided. Pupils will now read information posters around the room (resources provided at the end of the lesson) and will use this to complete adaptation profile cards for animals and plants from arctic and desert conditions. The next part of the lesson will focus on extremophiles, pupils will read an article on extremophiles and will read through and underline the descriptions of particular extremophile adaptations. Once this work has been self-assessed pupils will move on to an exam-style question on adaptations, once this task has been completed pupils can either self-assess or peer-assess their work. The plenary task is for pupils to write three quiz questions on the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Chemical cells, batteries and fuel cells
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Chemical cells, batteries and fuel cells

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a diagram to show how chemical cells/batteries work by relying upon the differing reactivity of metals. Students will then watch a video and will need to answer a set of questions using the information provided in the video, students can then self-assess their work using the mark scheme provided in the PowerPoint. Students will now need to complete an investigation into the potential difference produced by different chemical cells by following the instructions on the practical sheet provided. Pupils will need to record the results of their investigation and write a conclusion on the practical worksheet. The next task is a ‘Quick Check’ to assess students understanding of what they have learnt so far this lesson, pupils will need to complete a set of questions and they can then self-assess their work using the answers provided in the PowerPoint. The last part of the lesson will focus on fuel cells, students will watch a video and using the information provided they will need to ask a set of questions. The answers to these questions are included in the PowerPoint, so students can check their work once this task is complete. Finally, students will be given a set of information on hydrogen fuel cells which they can read in pairs. Using this information pupils will need to produce a table to sum the advantages and disadvantages of using hydrogen fuel cells as an energy source. Students can then check their work against answers provided in the PowerPoint. The plenary task is for pupils to summarise what they have learnt this lesson in three sentences, using key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - Chemical Analysis
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - Chemical Analysis

5 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical Analysis’ unit for the NEW AQA Chemistry Specification. Lessons include: Pure substances & mixtures Analysing chromatograms Testing for gases Testing for positive and negative ions Investigative analysis The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE (2016) Chemistry  - Instrumental Analysis
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Instrumental Analysis

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. The lesson begins with a ‘Think > Pair > Share’ task where students are required to discuss sectors which must reply upon efficient and effective instrumental methods of chemical analysis. After a short class discussion, the teacher can discuss the importance of instrumental analysis for environmental and health care sectors. Students will now be shown the difference between qualitative and quantitative methods of chemical analysis. They will then be given a set of statements, students will need to sort these statements into either advantages of disadvantages of instrumental methods of chemical analysis vs. traditional methods. Pupils will need to self-assess their work using the answers provided in the PowerPoint. Next, students will watch a video on flame emission spectroscopy and will need to use information provided in the PowerPoint to answer a set of questions. This work can be self-assessed using the answers provided. Following this, students will be provided with a set of information about this process, they will need to use this information to answer a set of questions. Their answers to these questions can be self-assessed using the mark scheme provided. Lastly, pupils will be shown a diagram showing the results of flame emission spectroscopy tests for different metals. The plenary task requires pupils to write a Whatsapp message about what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Inheritance, Variation & Evolution' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, Variation & Evolution' lessons

16 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Inheritance, Variation & Evolution’ unit for the NEW AQA Biology Specification. Lessons include: Types of reproduction Variation Meiosis Selective Breeding Genetic Engineering Inherited Disorders Gene Expression & Inheritance DNA & Protein Synthesis Ethics of gene technologies Evolution by natural selection Evidence of evolution Evolution of antibiotic resistant bacteria Evolution & Extinction The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Crude Oil & Fractional Distillation Homework
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Crude Oil & Fractional Distillation Homework

(0)
This task is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Organic Chemistry’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Structure & Function of Body Systems Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Structure & Function of Body Systems Homework

(2)
This homework activity is designed for the KS3 Science Course, specifically Year 7 B1.2 Module on ‘Structure & Function of Body Systems’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com and any feedback would be appreciated :)