Hero image

GJHeducation's Shop

Average Rating4.50
(based on 904 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1092k+Views

1887k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic B4: Community level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B4: Community level systems (OCR Gateway A GCSE Biology)

7 Resources
This bundle of 7 lessons covers the majority of content in Topic B4(Community-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: Ecosystems Abiotic and biotic factors Competition and interdependence Efficiency of biomass transfer The Carbon cycle The Nitrogen cycle Decomposers All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
OCR Gateway a GCSE Combined Science P4 REVISION
GJHeducationGJHeducation

OCR Gateway a GCSE Combined Science P4 REVISION

(0)
An engaging lesson presentation (78 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Waves and their properties Wave velocity Electromagnetic waves Atoms and isotopes Alpha, beta, gamma Nuclear equations Half-life Radiation and the human body Students will be engaged through the numerous activities including quiz rounds like “Tell EM the Word” and “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P6 REVISION (Radioactivity)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Describe the structure of an atom, including the charge and mass of the subatomic particles Describe the structure of nuclei of isotopes Be able to explain why an atom is neutral Recall the radiation that can be emitted from an unstable nucleus Explain what is meant by background radiation and know the origins of this radiation Recall that an alpha particle is equivalent to a helium nucleus Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise Describe the processes of beta plus and beta minus decay Explain the effects on the atomic and mass number of radioactive decays Balance nuclear decay equations Recall that the unit of activity of a radioactive isotope is the Becquerel Use the concept of half life to carry out simple calculations Describe the differences between contamination and irradiation Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Rearranging the formula (Maths in Science)
GJHeducationGJHeducation

Rearranging the formula (Maths in Science)

(0)
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
Decomposers
GJHeducationGJHeducation

Decomposers

(0)
A fully-resourced lesson which looks at how decomposers are involved with the process of decay. The lesson includes an engaging and detailed lesson presentation (31 slides) and an associated differentiated worksheets. The lesson begins by displaying the definitions for decomposers and detritivores and challenging students to use their bingo cards to see if they can work out the words which are being described. Students will learn how these two types of organisms work together to break down matter. Moving forwards, a worked example is used to guide students through how to calculate the rate of decay from a range of different data types. Students will be challenged to act like a travel agent for decomposers to come up with the different conditions that they require. Finally, they have to bring all of the new-found knowledge together to answer a range of summary questions. These questions are differentiated two ways so that differing abilities can access the work. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)

8 Resources
As the first topic to be taught at the start at the second year of the Edexcel International A-level Biology course, topic 5 is very important and the content includes the key reaction of photosynthesis. All 9 of the lessons included in this bundle are highly detailed and have been filled with a wide variety of tasks which will engage and motivate the students whilst covering the following specification points: The overall reaction of photosynthesis The phosphorylation of ADP and the hydrolysis of ATP The light-dependent reactions of photosynthesis The light-independent reactions of photosynthesis The products of the Calvin cycle The structure of the chloroplasts and the role of this organelle in photosynthesis Be able to calculate net primary productivity Know the relationship between NPP, GPP and R Understand the meaning of the terms ecosystem, community, population and habitat The numbers and distribution of organisms in a habitat are controlled by biotic and abiotic factors The concept of niche The effect of temperature on the rate of enzyme activity and the calculation of the Q10 Isolation reduces gene flow and leads to allopatric and sympatric speciation If you would like to sample the quality of the lessons in this bundle, then download the products of photosynthesis lesson as this has been uploaded for free
Genetic diversity (AQA A-level Biology)
GJHeducationGJHeducation

Genetic diversity (AQA A-level Biology)

(1)
This fully-resourced lesson describes genetic diversity as the number of genes in a population and explains how this is increased by polymorphic gene loci. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover the first part of point 4.4 of the AQA A-level Biology specification but also introduces inheritance and codominance so that students are prepared for these sub-topics when covering topic 7 in the following year. In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology, so the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in topic 4 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation.
Farming and conservation (AQA A-level Biology)
GJHeducationGJHeducation

Farming and conservation (AQA A-level Biology)

(0)
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification. The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies. The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
OCR GCSE Combined Science Paper 4 REVISION (Chemistry topics C4-C6)
GJHeducationGJHeducation

OCR GCSE Combined Science Paper 4 REVISION (Chemistry topics C4-C6)

(0)
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within topics C4 - C6 of the OCR Gateway A GCSE Combined Science specification that can be assessed in PAPER 4 The topics covered are: C4: Predicting and identifying reactions and products C5: Monitoring and controlling chemical reactions C6: Global challenges Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
Filtration and crystallisation
GJHeducationGJHeducation

Filtration and crystallisation

(0)
This is an engaging and practical-based lesson which uses the background idea of a man needing to make crystals for a date to engage students into understanding how the separation methods of filtration and crystallisation work. Like all of the lessons in the separation topic, a lot of the key terms sound similar and are often wrongly used by students. For this reason, time is given in the lesson to ensure that students can use them correctly, especially when describing filtration. In line with the background of the lesson, students are challenged to come up with the apparatus and substances needed to make the crystals. A method is provided so should the teacher choose, students will be able to carry out the practical and produce the copper sulphate crystals. Progress checks are written into the lesson at regular intervals, which question the students on this lesson topic and that of related ones and the final task of the lesson involves an exam question where students have to describe the method and equipment needed to make crystals. This lesson has primarily been written for GCSE students (14 - 16 years in the UK) but is appropriate for younger students who are studying the separation topic
Topic C2h: Chemical tests (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C2h: Chemical tests (Edexcel iGCSE Chemistry)

3 Resources
This bundle of 3 lessons covers the majority of the content in Topic C2h (Chemical tests) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Describe tests for the colourless gases Describe how to carry out a flame test Know the colours produced in the flame tests for the different cations Describe further tests for the cations Describe tests for the anions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Edexcel GCSE Science Topic B9 REVISION
GJHeducationGJHeducation

Edexcel GCSE Science Topic B9 REVISION

(1)
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 9 (Ecosystems and material cycles) of the EDEXCEL GCSE Combined Science specification The topics that are tested within the lesson include: Levels of organisation Communities Interdependence in a community Determining the number of organisms in a given area Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Formation of the early atmosphere
GJHeducationGJHeducation

Formation of the early atmosphere

(0)
This lesson has been designed to enable students to recognise the key stages in the formation of the early atmosphere and to also show how today’s atmosphere was formed. The lesson has been primarily designed for GCSE students but is suitable for higher ability younger students who perhaps are studying the Earth and its formation. The lesson begins by checking that the students know the percentages of the different gases found in the modern day atmosphere. Some time is taken to check on their mathematical skills by challenging them to produce a pie chart to represent these different percentages. Students are then asked to predict how they think the percentage of oxygen, carbon dioxide and water vapour would have differed from now to the early atmosphere. The key steps in the formation are then introduced and critical points discussed. Students will learn about the volcanic activity, formation of the oceans and photosynthesis as crucial points in the change to the percentages of those three gases. A number of progress checks are written into the lesson, which check knowledge from this lesson and related topics such as the reaction of acids and gases.
Species and taxonomy (AQA A-level Biology)
GJHeducationGJHeducation

Species and taxonomy (AQA A-level Biology)

(1)
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system. The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified. This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.
CITES and global biodiversity (Edexcel A-level Biology B)
GJHeducationGJHeducation

CITES and global biodiversity (Edexcel A-level Biology B)

(0)
This lesson describes the effect that treaties such as CITES have had on global diversity. The PowerPoint and accompanying worksheets have been primarily designed to cover point 10.4 (ii) of the Edexcel A-level Biology B specification but has been planned to constantly challenge them on their knowledge of topic 3.3 (biodiversity) as a local conservation agreement is also considered Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. The students will learn that the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement: Tree pangolin, eastern black rhino for CITES appendix I Darwin’s orchid for CITES appendix II Four-horned antelope for CITES appendix III Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress. The final part of the lesson considers the Countryside Stewardship Scheme as a local conservation agreements and discusses the reasons behind some of the key points. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of biodiversity to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
Spearman rank correlation coefficient (Edexcel A-level Biology B)
GJHeducationGJHeducation

Spearman rank correlation coefficient (Edexcel A-level Biology B)

(0)
This lesson describes how to analyse data using the Spearman rank correlation coefficient. The PowerPoint and accompanying exam-style question are part of the second lesson in a series of 2 lessons which have been designed to cover point 10.1 (vi) of the Edexcel A-level Biology B specification. The first lesson in this series described how to analyse data using the standard deviation and the t-test As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
Starch & cellulose (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch & cellulose (Edexcel A-level Biology A)

(0)
This detailed lesson describes the relationship between the structure and function of starch and cellulose. The engaging PowerPoint and accompanying resource have been designed to cover point 4.9 of the Pearson Edexcel A-level Biology A specification and focuses on the importance of the glycosidic and hydrogen bonds for the structure of these polysaccharides. The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril. The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
Genetic engineering (OCR A-level Biology)
GJHeducationGJHeducation

Genetic engineering (OCR A-level Biology)

(0)
This extensive and fully-resourced lesson describes the principles and explains the techniques used in the production of recombinant DNA in genetic engineering. Both the engaging PowerPoint and accompanying resources have been written to cover points 6.1.3 (f) (i & ii) of the OCR A-level Biology A specification. The lesson begins with a definition of genetic engineering and recombinant DNA to allow students to begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in module 2, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The second half of the lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. The following key steps are described and explained: • Remove and prepare the plasmid to act as a vector • Insert the DNA fragment into the vector • Transfer the recombinant plasmid into the host cell • Identify the cells which have taken up the recombinant plasmid • Allow the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way.
The control of HEART RATE (OCR A-level Biology)
GJHeducationGJHeducation

The control of HEART RATE (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the effects of nervous mechanisms on the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the part of point 5.1.5 (k) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the control of the heart rate by the cardiovascular centre in the medulla oblongata This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)
GJHeducationGJHeducation

AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)

(0)
This is a fully-resourced REVISION resource that consists of an engaging PowerPoint (127 slides) and associated worksheets that challenge the students on their knowledge of topic 7 (Genetics, populations, evolution and ecosystems) of the AQA A-level Biology specification. A wide range of activities have been written into this resource to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to cover as much of the content as possible, but the following sub-topics have been given particular attention: Genetic terminology Using genetic diagrams to calculate phenotypic ratios and percentages for the inheritance of a single gene Applying the Hardy-Weinberg principle Sex-linkage Codominance, multiple alleles and interpreting genetic trees Types of variation Ecological terminology Dihybrid inheritance Using the chi-squared test to determine significance Epistasis Succession Sampling to estimate populations and consider distribution The mathematic elements of this topic and specification are challenged throughout the resource and useful hints given to enable the students to pick up vital marks from questions on this topic. Due to the size of this resource, teachers may choose to use it over the course of a number of lessons and it is suitable for use at the end of topic 7, in the lead up to the mocks or in the lead up to the actual A-level exams.