Hero image

SWiftScience's Shop

Average Rating4.26
(based on 754 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

798k+Views

461k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Infection & Response' SoW for the higher tier. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of this lesson is a recap on the plant diseases students should have already covered within the 'infection & response' unit - rose black stop and tobacco mosaic virus. Plants will then be asked to come up with a brainstorm of the symptoms plants may exhibit when they are diseased. Once pupils have discussed this and tried to come up with some ideas you can reveal some of the common symptoms on the PowerPoint slide, along with images and examples. The next slide looks at the ways in which plant diseases can be diagnosed, from gardening manuals to monoclonal antibody testing kits. The next activity focuses on the role of certain minerals in the growth and development of plants, firstly students will draw a table in their book and then they will given a slip of information about one of the mineral ions - nitrates, magnesium or potassium. Pupils will need to walk around the room or swap these slips of paper with people on the same table as them to complete the table, they can then assess their work. The final part of the lesson focuses on plant defence responses, firstly pupils will be shown some diagrams of plants and their defence methods and will be asked to think > pair > share the potential ways plants can defend against disease. Pupils will then be given a card sort with different plant defence mechanisms, students need to sort these into three different categories - physical barrier, chemical barrier, defence against herbivore. Once completed pupils can then assess their work using the answers provided. The final task is an exam-style question on what they have learnt that lesson, pupils of higher ability may want to complete these questions in silence at the backs of their book. Pupils can then self or peer-assess their work. Plenary activity is to write 3 key words, 2 facts and 1 question about what pupils have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution ’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to inherited disorders, particularly the two examples students will need to learn about - polydactyly and cystic fibrosis. Pupils will then be given information on either of these two disorders and will be asked to complete a fact file on the one they have been given using a set of criteria provided. Once they have completed one of the fact files they will need to pair up with someone who did the other fact file to share information. Pupils will then be given further information about the inheritance of these disorders and whether it is controlled by a dominant or recessive allele. Pupils will need to draw genetic diagrams for each of the disorders given a set of example parent genotypes, and work out the probability of the offspring inheriting the condition. The next part of the lesson focuses on embryo screening, firstly pupils are introduced to the two ways in which embryos can be screened for genetic conditions - amniocentesis & chorionic villus sampling. The next task pupils will need to think > pair > share ways in which these two methods which be controversial, identifying the positive and negative effects on the baby and family. For the final activity pupils will be given a set of opinion cards in groups, they will need to read the viewpoints, discuss as a group and write a short summary paragraph on their opinion of genetic screening in embryos. The plenary task is for pupils to write three summary sentences of what they have learnt this lesson using as many key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology – Adaptations
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – Adaptations

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with students completing a think > pair > share on the types of environments in which organisms live around the world. After a short discussion with the class about the sorts of environments they are aware of, you can move the PowerPoint slide on to identify the types of biomes present on Earth. The next activity is a copy and complete activity on survival and reproduction as a recap, after pupils have completed this task they can self-assess their work using the answers provided. Next pupils will be introduced to adaptations, pupils will then watch a video on adaptations and answer questions using the information provided. Once they have completed this task they can mark their work using the answers provided. Pupils will now read information posters around the room (resources provided at the end of the lesson) and will use this to complete adaptation profile cards for animals and plants from arctic and desert conditions. The next part of the lesson will focus on extremophiles, pupils will read an article on extremophiles and will read through and underline the descriptions of particular extremophile adaptations. Once this work has been self-assessed pupils will move on to an exam-style question on adaptations, once this task has been completed pupils can either self-assess or peer-assess their work. The plenary task is for pupils to write three quiz questions on the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle
SWiftScienceSWiftScience

NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle

7 Resources
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification. Lessons include: Rates of reaction Reversible reactions Rate of reaction: The effect of catalysts Rate of reaction: The effect of concentration & pressure Dynamic equilibrium & altering conditions Collision Theory: The effect of temperature & surface area. The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology – New systems of classification
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – New systems of classification

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to evolutionary trees, pupils will be shown how to interpret evolutionary trees and understand the common ancestry between species of organisms. Pupils will then be shown the difference between convergent and divergent evolution. The next part of the lesson will focus on the work of Woese et al, pupils will watch a video and try to answer questions about Woese and his work, this can be assessed using the answers which can be revealed once the video has been watched. Pupils can then watch a second video, using this video they will then try to complete profile cards for three domains as proposed by Woese – archaea, bacteria and eukaryotes. Pupils can again check their work against the answers provided in the PowerPoint slide. Pupils will then be given some information on Woese and his work, students will need to use this information along with what they have learnt so far in the lesson to complete a newspaper article on his work and infamous discovery. The next part of the lesson looks again at evolutionary trees, pupils are shown how to use an evolutionary tree to compare the relationships between organisms. Pupils will then need to complete an exam-style question on evolutionary trees, which can be self-assessed using the mark scheme provided. The plenary task is for pupils to come up with questions for a set of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Reaction Profiles & Bond Energy Calculations
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reaction Profiles & Bond Energy Calculations

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided. Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles. The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided. Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint. The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided. Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work. The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Particle Model & States of Matter
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Particle Model & States of Matter

(3)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 Module on ‘Particles & Their Behaviour’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to particles, describing the differences between materials which are made up of just one type of particle - a substance - and those that are made up of different particles - a mixture. Students are also introduced to the idea of properties of a substance as a description of the way in which a substance looks like and behaves. Students will then carry out a ‘Copy and Complete’ task where they will fill in the blanks to outline what they have learned about particles so far this lesson. This task can be self-assessed using the mark scheme provided on the PowerPoint presentation. Students are now introduced to the three states of matter - solid, liquid and gas. Students will firstly watch a video, using which they will need answer a set of questions about the arrangement of particles in a solid, liquid and a gas. The answers to this task are included in the PowerPoint for students to self-assess their work once it is complete. Next, students will draw a summary table into their books and will be given a card sort, students will need to sort the statements into the correct part of their table to describe the properties of solids/liquids/gases. The mark scheme for this task is included on the PowerPoint presentation, it can be used for pupils to self-assess their work. Lastly, students are given another set of statements describing the properties of solids/liquids/gases. Students need to draw a Venn diagram into their books and will need to sort the statements into the Venn diagram, this task can be marked and corrected once complete. The plenary task requires students to unscramble a set of anagrams, each anagram is a key word learned from this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on prokaryotic cells and viruses begins with a starter discussion regarding the tissue of the stomach, and the difference between prokaryotic and eukaryotic cells. Students should then work to fill in a table to recap the organelles of eukaryotic cells and their functions, in their notes. The following slides introduce students to the features and content of prokaryotic cells, with a little memory test to help them label cell contents. Students can then self-assess against the slide before they move on to the next task where they will match cell structures to their role in the cell. The next task is a ‘think>pair>share’ to compare and contrast prokaryotic and eukaryotic cells. Student partners can then work together to compare and contrast on a worksheet table and self-access. Moving on to viruses! Students are asked to think and discuss the structure and function of viruses. They will also be asked to determine their confidence level for each of the outcome of the lesson by highlighting, in order to check their understanding. In order to learn about cell division in prokaryotic cells students are then asked to use an animation to help them draw a simple diagram of binary fission in their books. They are then asked to watch a short video explaining the rate of division and then calculate the rate of division for each hour for eight hours. Another video is included to help students complete a ‘fill in the blank’ passage about the replication of viruses, they can self-assess their passage on the following slide. A past-paper question is also included for students to check their understanding of the lesson, they can then self or partner-assess their work. As a plenary task, students should complete three sentences in their books describing what they have learned, what they already knew, and what they might like to learn more about. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Homeostasis' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Homeostasis' lessons

12 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Homeostasis’ unit for the NEW AQA Biology Specification. Lessons include: 1. Principles of homeostasis 2. The human nervous system 3. Reflex actions 4. The endocrine system 5. The control of blood glucose levels 6. Treating diabetes 7. The role of negative feedback 8. Human reproduction 9. The menstrual cycle 10. Controlling fertility 11. Infertility treatments 12. REQUIRED PRACTICAL: Reaction Time The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons

10 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organic Chemistry’ unit for the NEW AQA Chemistry Specification. Lessons include: Alcohols, carboxylic acids and esters. Complete & incomplete combustion Cracking hydrocarbons Fractional distillation Hydrocarbons Natural polymers & DNA Polymerisation Reactions of alkenes The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - Treating diabetes
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Treating diabetes

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a quick recap from the previous lesson on the cause and control of diabetes, pupils will need to copy and complete sentences in their books, which can then be self-assessed. Next pupils are given detailed posters of information on the treatments available to patients with type 1 and type 2 diabetes. Pupils will need to read through these posters in pairs/on a table and answer the questions on the PowerPoint slide. Once finished, pupils can self-assess their work using the answers provided. Pupils will now focus on the advantages and disadvantages of different medical cures for type 1 diabetes. In pairs they will be given a set of cards informing them of new advances in treatments available to patients with type 1 diabetes and they will need to create a summary table to weight up the pro’s and con’s of each treatment. The final activity is an exam question on what pupils have learnt so far that lesson, this is accompanied with a mark scheme which pupils can use to mark their work. The plenary activity is an anagram challenge, pupils need to unscramble the letters to spell a key word from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Metals & Non-Metals
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Metals & Non-Metals

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the Periodic Table, students will be shown a diagram of the Periodic Table and will be asked to identify whether they think certain elements are metals or non-metals, or even semi-metals (metalloids). This task can the be checked and assessed against the answers provided on the PowerPoint. Next, students will be given part of a table of information on the properties of metals compared to non-metals. They will need to walk around the room and trade information with others in order to successfully complete their own table. Once this task has been completed, students can self-assess their work using the mark scheme provided. Students are now shown a diagram of an iron roof and a copper roof and how this can change over time, students are asked to think about what is happening in these picture & try to identify the chemical reaction. After a short class discussion, the answers to the questions will then be revealed. Students will then be told that non-metals react in a similar way with oxygen, they will then be shown 4 incomplete word equations for the reaction of different non-metals with oxygen. Students will need to complete this equation, this task can the self-assessed using the mark scheme provided. The last activity is a true or false activity, students will need to identify whether the statements about metals/non-metals are true or false. This task can the be marked using the mark scheme provided. The plenary task is an exit card, students will need to write down three key words, one fact and a question to test their peers on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Dynamic Equilibrium & Altering Conditions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Dynamic Equilibrium & Altering Conditions

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a ‘Think > Pair > Share’ task whereby students need to consider what it means for a reaction to be in ‘equilibrium’ . After a class discussion, the definition of a reversible reaction (in a closed system) to be at equilibrium is revealed to the class, which they can note down in their books. This is further explained using a set of diagrams to depict what happens to the concentration of reactants and products during the course of a reversible reaction. Students can sketch a graph into their book to show how the equilibrium of a reversible reaction is reached. The next task focuses on ‘Le Chatelier’s Principle’, students are firstly introduced to the idea that the equilibrium of a reversible reaction can be altered by changing the conditions of that reaction, i.e. an increase in temperature. Students will then be shown a set of demonstrations (video links included) for each they will need to note down their observations, identify the conditions which are changing and match the correct reaction to the correct word equation. Pupils will complete a worksheet for this task, which will be assessed using the mark scheme provided. For the next part of the lesson, students will watch a video on the effect of pressure on equilibrium and answer a set of questions. These questions can be self-assessed using the answers provided on the PowerPoint. Students will now ‘Think > Pair > Share’ the effect of an increase in temperature on the equilibrium of a reversible reaction, the answer is then revealed to pupils using an example. Pupils will now complete a ‘Quick Check’ task where they will be required to answer a set of questions about the reversible reactions and the effect of altering conditions on dynamic equilibrium. Pupils can self-assess their work using the answers provided on the PowerPoint. Finally, students will need to complete a summary sheet on the effect of pressure and temperature on the equilibrium of a reversible reactions, students can self assess their work using the answers provided. The plenary task requires pupils to write down three sentences to summarise what they have learnt in today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The Carbon Cycle
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The Carbon Cycle

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on outlining the importance of carbon within the living world, where we might find it in our bodies and the world around us. The first task pupils will be asked to complete is a mind map of the processes they think will add or remove carbon dioxide from our atmosphere. Pupils can discuss in pairs and once complete the answers can be revealed for pupils to assess their work. The next task is for pupils to watch a video about greenhouse gases, there are a set of questions pupils will be given which they need to answer whilst watching the video. Once this task is complete pupils can assess their work using the answers provided. The next task is a fill-in-the-blanks task, pupils are given a paragraph about the role of carbohydrates in animals and plants, they need to complete this using the key words provided. Once completed pupils can assess their work using the answers provided. Pupils will then watch a video about the carbon cycle which details the process involved, once the students have watched the video they will be given a worksheet which they need to complete using the captions provided on the PowerPoint slide. Lower ability students may want to complete this as a group & could perhaps complete whilst the video is playing to assist them. Once they have completed the task pupils can self-assess their work using the answers provided. The next task may be better suited to higher ability pupils, a set of cards images and captions are provided per pupil and they need to use this to construct their own carbon cycle in their books. Higher ability pupils may want to test their knowledge and turn to their back page to complete this without looking at their previous work The last task is for pupils to consider the future and how we may be able to implement strategies to help reduce our carbon emissions in order to combat global warming. Pupils are to discuss possible methods/strategies we could use and mind map their ideas in their books. The plenary task is for pupils to turn to the back of their books and write down a description of as many processes which contribute to the carbon cycle as possible. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Bioenergetics' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Bioenergetics' lessons

12 Resources
This bundle of resources contains 9 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Plants tissues & organs 2. Photosynthesis 3. Products of photosynthesis 4. The rate of photosynthesis (limiting factors) 5. Making the most of photosynthesis 6. Aerobic Respiration 7. Anaerobic Respiration 8. The response to exercise 9. Metabolism and the liver The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, exam-style questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lessons starts with looking at the way in which we use models to represent the structure of different compounds, models include the 3D ball and stick model, 2D ball and stick model, dot and cross diagrams and displayed formula showing bonds. Pupils are reminded of the limitations of some of these models, this is something they should be able to recount. Pupils are now shown a diagram to show how intermolecular forces act between simple covalent molecules, pupils should be able to explain the difference between the strong covalent bonds between atoms but the weak intermolecular forces between molecules and how this relates to the the low melting and boiling points of simple covalent molecules. The next part of the lesson is going to focus on giant covalent structures, firstly pupils will watch a video and answer a set of questions. Their work can be self-assess using the answers provided on the PowerPoint presentation. Students are then introduced to the three main covalent structures - diamond, graphite and silicon dioxide. Students will be given a set of information on these structures which they will need to use to complete their worksheet on giant covalent structures. To assess their knowledge of this topic there is a set of ‘quick check’ questions, pupils of a higher ability may want to complete these questions in the back of their books without discussing with others. The work can be assessed using the mark scheme provided. The last part of the lesson focuses on fullerenes and graphene - two other giant covalent structures with unique properties. Students are firstly introduced to the structure and uses of these compounds before watching a video and answering questions about them. The work from this task can be self or peer assessed using the answers provided. The plenary task is for pupils to pretend they are a scientist researching the use of nanotubes, fullerenes and grapehene, they need to come up two ideas of how these materials can be used in future technologies. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Extracting Aluminium
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Extracting Aluminium

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly need to brainstorm ideas about the uses of aluminium, they can discuss their ideas with their partners and complete a mind map in their books. Some examples can then be revealed using the PowerPoint slide and pupils can check how many they got right, filling in any they may have missed. Pupils will then watch a video on the extraction of aluminium, students will need to answer a set of questions using the information provided in the video. Their work can be self-assessed using the answers provided. Students will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, students can check their work agaisnt the mark scheme provided. Next, students will be given a diagram of the electrolysis of aluminium oxide, pupils will need to complete this diagram by selecting the correct captions from a list provided on the board. Students can then check their work against the answers provided in the PowerPoint. The next task is a progress check, students will need to answer questions to assess their knowledge of what they have learnt so far this lesson. Pupils can then self or peer-assess their work using the answers provided. The plenary task is a 3-2-1 task, pupils will need to write 3 facts, 2 key words and one question to assess their peers knowledge of the topics covered this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The role of negative feedback
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The role of negative feedback

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts by recapping on the role of negative feedback systems in homoeostasis, pupils will need to complete a flow diagram to demonstrate how a negative feedback system works. This can be completed in their books and marked using the answers provided. The next part of the lesson focuses on thyroxine and adrenaline, pupils are reminded of the roles of each of these hormones and they will then be given some extra information (provided) using which they will need to answers some questions on the topic. Detailed answers are provided for these questions so that pupils can check their work by either peer or self-assessment. The next activity is a ‘who am I?’ task, pupils will have covered a range of hormones by this point and will now be given a set of descriptions about different hormones, they can discuss with their partners and try to identify the names of each of them. Once completed this work can be assessed. The final task is an exam question about hormones, with the mark scheme provided. The plenary task is for pupils to write a text message to a friend describing what they have learnt in the lesson today! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a definition on biodiversity, pupils are shown a pie chart of the numbers of different groups of organisms that have been identified to date. The first task is for pupils to consider which numbers correspond to which groups of organisms. Once pupils have discussed in pairs or groups the answers will be revealed, pupils can check their work against the answers provided. The next part of the lesson focuses on how and why scientists quantify biodiversity, pupils are firstly asked why it might be important to map out biodiversity - they can discuss in groups before the answer is revealed on the PowerPoint presentation. A map of the world depicting certain biodiversity hotspots is then shown to students and they are asked a couple of question about this map, pupils will be required to answer these questions in their books and then self-assess their work using the answers provided. Pupils are then asked to think > pair > share their ideas on why it is important to maintain biodiversity, in groups pupils may be given an A3 sheet for them to mind map their ideas onto. Once finished each group can feedback their ideas to the class and a larger mind map could be completed on the white board. Some of the key reasons for maintaining biodiversity cant then be detailed on the PowerPoint presentation for students to assess their work. The last task is for pupils to use information posters placed around the room to answer a set of questions, all on the topic of maintaining biodiversity. Once pupils have spent a good amount of time writing their answers down they should sit in their seats and use the mark scheme provided on the PowerPoint presentation to peer-assess their work. The plenary activity is for pupils to draw a feedback grid in their partners books and write down one positive comment, one negative comment and a question to test their knowledge. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Testing for gases
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for gases

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Students are introduced to the idea that scientists are able to conduct quick and simple tests to identify a number of gases - oxygen, carbon dioxide, hydrogen, chlorine. Pupils will now complete a circus of activities, moving around the room to conduct tests for the presence of oxygen, hydrogen and carbon dioxide, recording their results in a table in their books. Pupils will need to watch a teacher demonstration for the test for chlorine, they can also record their observations of this demo in their table of results. Pupils will then be shown a video outlining each of the gas tests, they can watch this to self-assess their answers from the investigations they carried out. Students will now be given a card sort, for each gas - oxygen, carbon dioxide, hydrogen and chlorine - they will need to identify the correct method and correct positive results. They should do this with their books closed so they don’t rely upon the results collected from the last task! Their work can then be self-assessed using the mark scheme provided. The next task is a ‘Quick Check’ activity whereby pupils need to answer a set of questions based upon what they have learned this lesson, the answers to this task is provided in the PowerPoint so students can either self-assess or peer-assess their work. The plenary task is ‘Take a minute’ where students need to spend a minute talking to the person next to them about what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)