Hero image

Engaging science Shop

Average Rating4.81
(based on 45 reviews)

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.

166Uploads

25k+Views

14k+Downloads

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.
IB Biology (All units) : Student checklist  (first exams in 2025)
AmenghisAmenghis

IB Biology (All units) : Student checklist (first exams in 2025)

(0)
This bundle contains 41 comprehensive checklist for the IB Biology (first exams 2025) syllabus. Each checklist contains a detailed breakdown of the content students are expected to know. The checklist use a RAG system (Red, Amber, Green) which students use to evaluate their understanding: Red: Students is not familiar with the objective and need to revise Amber: Student is somewhat familiar with the objective but still need to revise Green: Student is confident with the objective. These checklist are fantastic for supporting students with their revision for either end of year exams, end of topic revision or for their actual IB exams. Both word and pdf versions
IB Biology: A4.1 Evolution and speciation (first exams in 2025)
AmenghisAmenghis

IB Biology: A4.1 Evolution and speciation (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A4.1 Evolution and speciation in the new IB Biology specification This Powerpoint consists of 56 slides and contains the followings: All the information ( HL and SL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist The following content is included: A4.1.1: Evolution as change in heritable characteristics of a population. A4.1.2-5: Evidence for evolution A4.1.5-7: Speciation A4.1.8: Types of speciation: allopatric vs sympatric (HL only) A4.1.9-10: Adaptive radiation and barriers to hybridisation (HL only). A4.1.11: Hybridisation and polypoid in speciation (HL only)
CIE iGCSE Co-ordinated Science revision checklist (All topics)
AmenghisAmenghis

CIE iGCSE Co-ordinated Science revision checklist (All topics)

(1)
This bundle contains 35 comprehensive checklist for the Cambridge iGCSE Co-ordinated science syllabus. Updates have been made to B9 and C12&13 have been made (initally incorrect checklist were uploaded Each checklist contains a detailed breakdown of the content students are expected to know. The checklist use a RAG system (Red, Amber, Green) which students use to evaluate their understanding: Red: Students is not familiar with the objective and need to revise Amber: Student is somewhat familiar with the objective but still need to revise Green: Student is confident with the objective. These checklist are fantastic for supporting students with their revision for either end of year exams, end of topic revision or for their actual iGCSE.
IB Biology C2.1:  Chemical signalling HL only (first exams in 2025)
AmenghisAmenghis

IB Biology C2.1: Chemical signalling HL only (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit C2.1 Chemical signalling in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 70 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: C2.1.1: Define the term ligand. C2.1.2: Outline the stages of signal transduction. C2.1.3: Explain the mechanism of quorum sensing in bacteria and discuss its role in bacterial behaviour. C2.1.4: Understand bioluminescence and its importance and applications. C2.1.5: Identify the categories of signalling chemicals in animals ­ hormones, neurotransmitters, cytokines and calcium ions. C2.1.6: Differentiate between different types of signals used by multicellular organisms. C2.1.7: Describe the difference in structure and function of hormones and neurotransmitters. C2.1.8: Demonstrate an understanding of mechanisms that signalling molecules use to produce localised as well as distant effects. C2.1.9: Analyse the role of signalling molecules in the transmission of signals from one part of the body to another. C2.1.10: Compare and contrast transmembrane receptors and intracellular receptors. C2.1.11: Describe the different signalling pathways activated by transmembrane receptors and intracellular receptors. C2.1.12: Explain the mechanisms of initiation of signal transduction pathways. C2.1.13: Compare and contrast different types of transmembrane receptors and their mechanisms of action, including neurotransmitter receptors and G protein-coupled receptors. C2.1.14:Analyse the role of transmembrane receptors in changing membrane potential and activating intracellular signalling pathways. C2.1.15: Explain that positive feedback amplifies the response. C2.1.16: Explain that negative feedback dampens or inhibits the signalling response. C2.1.17: Explain that a balance of both positive and negative feedback is necessary for proper cellular response
IB Biology: A4.2 Conservation of biodiversity (first exams in 2025)
AmenghisAmenghis

IB Biology: A4.2 Conservation of biodiversity (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A4.2 Ecosystems in the new IB Biology specification This Powerpoint consists of 51 slides and contains the followings: All the information ( HL and SL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist The following content is included: A4.2.1: Identify the levels of biodiversity – ecosystem diversity, species diversity and genetic diversity. A4.2.2: Compare the current number of species and past levels of biodiversity. A4.2.3: Describe the causes of anthropogenic species extinction. A4.2.4: Analyse case studies to understand the range of causes of extinction. A4.2.5: Describe the causes of ecosystem loss. A4.2.6: Analyse case studies to understand the range of causes of ecosystem loss. A4.2.7: Analyse evidence for a biodiversity crisis from different sources. A4.2.8: Describe the causes of the current biodiversity crisis. A4.2.9: Describe different ways to conserve biodiversity. A4.2.10: Know the mechanism of conservation prioritisation.
IB Biology B2: Cells - All lessons  (first exams in 2025) Bundle
AmenghisAmenghis

IB Biology B2: Cells - All lessons (first exams in 2025) Bundle

3 Resources
This bundle contains all the resources you need to teach B2 as part of the new IB specification: Membranes and transport, Organelles and compartmentalisation Cell specialisation This bundle contains: Over 160 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Reserch tasks Quesitons and answers This is ready to teach as soon as you download it!!
IB Biology: B2.2 Organelles and compartmentalisation (first exams in 2025)
AmenghisAmenghis

IB Biology: B2.2 Organelles and compartmentalisation (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B2.2 Organelles and compartmentalisation in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 49 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B2.2.1:State, with examples, that organelles are structures that are separate subunit of cells and perform a specific function. B2.2.2:Explain the advantages, using phagocytic vacuoles and lysosomes as examples, of the compartmentalisation of cytoplasm. B2.2.3: Explain the advantage of the separation of the nucleus and the cytoplasm in regard to protein synthesis. B2.2.4: Explain, using an annotated diagram, how the structure of the mitochondrion aids in the production of ATP. B2.2.5: Explain, using an annotated diagram, how the structure of the chloroplast aids in photosynthesis. B2.2.6: Describe the functional advantages of the double membrane around the nucleus in protein synthesis and cell division. B2.2.7: Describe the different roles of bound and free ribosomes. B2.2.8: Outline the function of the Golgi apparatus in the processing and transport of proteins. B2.2.9: Describe the role of vesicles in cells and the role of clathrin in the formation of vesicles.
IB Biology: B4.1 Adaptation to environment (first exams in 2025)
AmenghisAmenghis

IB Biology: B4.1 Adaptation to environment (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B4.1 Adaptations to environment in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 60 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B4.1.1: Define habitat as a place in which a community, species, population or organism lives. B4.1.2: Define adaptation and discuss various ways that organisms have adapted to the abiotic factors of their habitat particularly the sand dunes and mangrove swamp. B4.1.3: Explain how abiotic variables affect a species distribution and contribute to its range of tolerance. B4.1.4: Use transect data to correlate the distribution of an organism using sensors and data loggers. B4.1.5: State the conditions required for coral reef formation. B4.1.6: Describe how abiotic factors act as the determinants of terrestrial biome distribution. B4.1.7: Recognise biomes as groups of ecosystems with similar communities due to similar abiotic conditions and convergent evolution B4.1.8: State the adaptations to life in hot deserts and tropical rainforest.
GCSE/iGCSE Biology: Specialised cells
AmenghisAmenghis

GCSE/iGCSE Biology: Specialised cells

(0)
This resource is perfect for a Year 9/10 class studying GCSE specialised cells. The lesson contains a starter tasks, recap on prior knowledge, student tasks with answers, research task and plenary. The following content is covered: Starter tasks Definition for specilisation Student worksheet Factsheets for red blood cells, nerve cells, egg and sperm, cililated epithelium, palisade cell, root hair cell, xylem, pholem and muscle cell Plenary tasks
IB biology A2: Cells bundle (Origins of cells, cell structure and viruses)
AmenghisAmenghis

IB biology A2: Cells bundle (Origins of cells, cell structure and viruses)

3 Resources
This bundle contains all the resources you need to teach A2 Biology (Origins of cells, cell structure and viruses) as part of the new IB specification. This bundle contains: Over 180 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Reserch tasks Quesitons and answers This is ready to teach as soon as you download it!!
IB Biology D4.1: Natural selection (first exams in 2025)
AmenghisAmenghis

IB Biology D4.1: Natural selection (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D4.1: Natural selection in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D4.1.1: Recognise that natural selection is the mechanism that drives evolutionary change. D4.1.2: Explain the roles of mutation and sexual reproduction in generating variation. D4.1.3: Identify and explain the biotic and abiotic factors that promote natural selection. D4.1.4: Explain that differences in adaptation, survival and reproduction form the basis of natural selection. D4.1.5: Recall that heritable changes lead to evolutionary change. D4.1.6: Define sexual selection as a special case of natural selection. D4.1.7: Describe the effects of sexual and natural selection through simulation of selection pressure. D4.1.8: Define the concept of a gene pool. D4.1.9: Describe the changes that occur in allele frequencies in geographically isolated populations. D4.1.10: State the causes for the changes in allele frequency in the gene pool. D4.1.11:  Differentiate among directional, disruptive and stabilising selection. D4.1.12: Define Hardy-Weinberg equilibrium. D4.1.13: Identify the Hardy-Weinberg conditions that need to be maintained for genetic equilibrium in a population
IB Biology C2.2: Neural signalling (first exams in 2025)
AmenghisAmenghis

IB Biology C2.2: Neural signalling (first exams in 2025)

(0)
This PowerPoint contains everything you need to teach the Theme/Unit C2.2 Neural signalling in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 100 slides and contains the followings: All the information the IB have included in the new spec. Exam tips Clear diagrams Summary videos Student research tasks Clearly identified HL and SL content Student checklist **Exam style questions Summary The following content is included: C2.2.1: Describe the structure of a neuron having a cell body with elongated nerve fibres of varying length projecting from it. C2.2.2: Describe the axon as a long single fibre helping in the conduction of electrical impulse and dendrites as multiple shorter fibres receiving and processing incoming signals. C2.2.3: Describe how energy from ATP drives sodium ions into the membrane causing depolarisation. C2.2.4: Explain the concept of membrane polarisation and membrane potential. C2.2.5: Explain the reasons for resting potential being negative. C2.2.6: Compare the speed in myelinated and non-myelinated fibres. C2.2.7: Explain the role of synapsis in communication between neurons. C2.2.8: Compare and contrast the mechanisms of neurotransmitter release in different types of synapses. C2.2.9: Analyse the factors that affect the magnitude and duration of excitatory postsynaptic potentials. C2.2.10: Describe the process of depolarisation and repolarisation during an action potential. C2.2.11: Evaluate the importance of action potential propagation in neural communication and information processing. C2.2.12: Explain the concept of an oscilloscope and its use in measuring neural activity. C2.2.13: Interpret and analyse oscilloscope traces of resting potentials and action potentials. C2.2.14: Describe the process of saltatory conduction in myelinated fibres. C2.2.15:Compare and contrast the speed and efficiency of action potential propagation in myelinated and unmyelinated fibres. C2.2.16: Describe the effects of exogenous chemicals on synaptic transmission, including drugs and toxins. C2.2.17: Analyse the factors that affect the magnitude and duration of inhibitory postsynaptic potentials. C2.2.18: Understand that multiple presynaptic neurons interact with all-or-nothing consequences in terms of postsynaptic depolarisation. C2.2.19:Understand that nerve endings have channels for positively charged ions, which open in response to a stimulus such as high temperature, acid or certain chemicals such as capsaicin in chilli peppers. C2.2.20:Explain that the entry of positively charged ions causes the threshold potential to be reached and propagation of nerve impulses. C2.2.21:Explain that consciousness is another example of the consequences of interaction.
iGCSE Biology (Cambridge): B1-5 revision lessons
AmenghisAmenghis

iGCSE Biology (Cambridge): B1-5 revision lessons

(0)
This revision PowerPoint contains 81 slides and is perfect to prepare students for their end of year exams or their final iGCSE. This can be used to deliver several lessons, or given to students for independent revision. This resources contains fantastic diagrams and key information in a student friendly manner. The topics covered in this resource include: Characteristics and classifaction of living organisms Organisation of the organism Movement in and out of cells Biological molecules Enzymes
IB biology: A1 and A2 bundle (first exams 2025)
AmenghisAmenghis

IB biology: A1 and A2 bundle (first exams 2025)

5 Resources
This bundle contains all the resources you need to teach A1 (Water and nucleic acids) and A2 Biology (Origins of cells, cell structure and viruses) as part of the new IB specification. This bundle contains: Over 300 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Reserch tasks Quesitons and answers This is ready to teach as soon as you download it!!
IB Biology D2.3: Water Potential  (first exams in 2025)
AmenghisAmenghis

IB Biology D2.3: Water Potential (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D2.3: Water Potential in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 45 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D2.2.1: Explain how water is able to dissolve many substances D2.2.2: Explain the movement of water from less concentrated to more concentrated solutions. D2.2.3: Predict the net movement of water based on the environment of a cell. D2.2.4: Outline the changes that occur to plant tissues bathed in hypotonic and hypertonic solutions. D2.2.5: Explain the effects of water movement into and out of cells on cells that lack a cell wall. D2.2.6: Explain the effects of water movement into and out of cells on cells that have a cell wall. D2.2.7: Outline medical applications of isotonic solutions. D2.2.8: Define the term water potential. D2.2.9: Explain the direction that water moves in terms of water potential. D2.2.10: Explain how solute potential and pressure potential affect the water potential within cells. D2.2.11: Explain the changes that occur when a plant tissue is bathed in either a hypotonic or hypertonic solution in terms of solute and pressure potentials.
GCSE/iGCSE Biology: Controlling body temperature (thermoregulation)
AmenghisAmenghis

GCSE/iGCSE Biology: Controlling body temperature (thermoregulation)

(0)
This fantastic resources covers the GCSE and iGCSE content for thermoregulation. Formed of over 30 slides, this lesson will take approximately 2-3 hours to teach. It contains: Starter slides Retrieval tasks for other biology topics Negative feedback All key notes and definitions required Explanations on how the body responds to high and low temperatures Plenty of exam style questions with answers
IB Biology A3: Organisms (first exams 2025)
AmenghisAmenghis

IB Biology A3: Organisms (first exams 2025)

2 Resources
This bundle contains all the resources you need to teach A3 (diversity or organisms and Classification and cladistics) as part of the new IB specification. This bundle contains: Over 150 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Reserch tasks Quesitons and answers This is ready to teach as soon as you download it!!
IB Biology (SL) Topic 4: Ecosystems (Complete)
AmenghisAmenghis

IB Biology (SL) Topic 4: Ecosystems (Complete)

(0)
Full resources bundle which you can use to teach Topic4 Ecosystems (IB SL Biology). Contains: Over 160 slides which can be used to teach over 20 hours. Contains starter tasks and regular assessment questions with answers Covers all subtopics: 4.1 Species, communities and ecosystems, 4.2: Energy flow, 4.3: Carbon cycling, 4.4: Climate change and student checklist
Biology: Cardiovascular disease (KS3/Grade 8/9)
AmenghisAmenghis

Biology: Cardiovascular disease (KS3/Grade 8/9)

(2)
Great resources where students investigate cardiovascular disease. The lesson will take approximately 2 hours and has two parts. This includes: Starter tasks Student friendly information Research tasks Engaging videos