Hero image

Engaging science Shop

Average Rating4.81
(based on 45 reviews)

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.

166Uploads

22k+Views

13k+Downloads

I have been teaching for 10 years both as a Biology/Chemistry/Pychology teacher and as a Head of department. I have experience teaching in both international schools and state comprehensives.
IB Biology D4.1: Natural selection (first exams in 2025)
AmenghisAmenghis

IB Biology D4.1: Natural selection (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the Theme/Unit D4.1: Natural selection in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: D4.1.1: Recognise that natural selection is the mechanism that drives evolutionary change. D4.1.2: Explain the roles of mutation and sexual reproduction in generating variation. D4.1.3: Identify and explain the biotic and abiotic factors that promote natural selection. D4.1.4: Explain that differences in adaptation, survival and reproduction form the basis of natural selection. D4.1.5: Recall that heritable changes lead to evolutionary change. D4.1.6: Define sexual selection as a special case of natural selection. D4.1.7: Describe the effects of sexual and natural selection through simulation of selection pressure. D4.1.8: Define the concept of a gene pool. D4.1.9: Describe the changes that occur in allele frequencies in geographically isolated populations. D4.1.10: State the causes for the changes in allele frequency in the gene pool. D4.1.11:  Differentiate among directional, disruptive and stabilising selection. D4.1.12: Define Hardy-Weinberg equilibrium. D4.1.13: Identify the Hardy-Weinberg conditions that need to be maintained for genetic equilibrium in a population
IB Biology Theme/Unit A (all lessons): Unity and diversity (first exams in 2025)
AmenghisAmenghis

IB Biology Theme/Unit A (all lessons): Unity and diversity (first exams in 2025)

10 Resources
This bundle contains all the resources you need to teach A1 (Water and nucleic acids) and A2 (Origins of cells, cell structure and viruses), A3 (Diversity and classification) and A4 (Ecosystems and conservation) as part of the new IB specification. This bundle contains: Over 600 slides which cover all the content stipulated by the IB. Now includes end of unit assessments for each unit assessments Student questions with answers Checklist Clear diagrams Reserch tasks Quesitons and answers This is ready to teach as soon as you download it!!
IB Biology Theme/Unit C: Interactions & Interdependence (first exams in 2025)
AmenghisAmenghis

IB Biology Theme/Unit C: Interactions & Interdependence (first exams in 2025)

10 Resources
This bundle contains all the resources you need to teach Theme/Unit C Interactions & Interdependence: C1 (Enzymes, respiration and photosynthesis) C2 (Chemical signalling and Neural signalling) C3 (Integration of body systems and Defence against diseases) C4 (Populations and communities & Transfer of energy and matter) As part of the new IB specification. This bundle contains: Over 700 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Research tasks Questions and answers Now includes 9 end of topic assessments (mark scheme included) This is ready to teach as soon as you download it!!
IB Biology: A2.3 Viruses HL only (first exams in 2025)
AmenghisAmenghis

IB Biology: A2.3 Viruses HL only (first exams in 2025)

(2)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A2.3 Viruses in the new IB Biology specification for HL This Powerpoint consists of 34 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist The following content is included: A2.3.1: Structural features common to viruses A2.3.2: Diversity of structures in viruses. A2.3.3: Lytic cycle of a virus A2.3.4: Lysogenic cycle of a virus A2.3.5: Evidence for several origins of viruses from other organisms A2.3.6: Rapid evolution in viruses
IB Biology Theme/Unit B (all lessons): Form and function (first exams in 2025)
AmenghisAmenghis

IB Biology Theme/Unit B (all lessons): Form and function (first exams in 2025)

11 Resources
This bundle contains all the resources you need to teach unit B Form and Function: B1 (Carbohydrates, lipids and proteins) B2 (Membranes and transport, organelles and compartmentalisation and cell specialisation) B3 (Gas exchange, transport and motility) B4 (Adaptations to environment and Ecological niches) As part of the new IB specification. This bundle contains: Over 600 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Research tasks Questions and answers Now includes 10 end of unit assessments, which include MCQs, short answer questions and data based questions, with a clear mark scheme This is ready to teach as soon as you download it!!
GCSE/iGCSE Biology: Controlling body temperature (thermoregulation)
AmenghisAmenghis

GCSE/iGCSE Biology: Controlling body temperature (thermoregulation)

(0)
This fantastic resources covers the GCSE and iGCSE content for thermoregulation. Formed of over 30 slides, this lesson will take approximately 2-3 hours to teach. It contains: Starter slides Retrieval tasks for other biology topics Negative feedback All key notes and definitions required Explanations on how the body responds to high and low temperatures Plenty of exam style questions with answers
IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)
AmenghisAmenghis

IB Biology: B1.1 Carbohydrates and Lipids (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach Theme/Unit B1.1 Carbohydrates and Lipids in the new IB Biology specification. This Powerpoint consists of 99 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content The following content is included: B1.1.1: Chemical properties of Carbon atoms allowing for the formation of diverse compounds upon which life is based. B1.1.2: Production of macromolecules by condensation reactions which link monomers to form polymers. B1.1.3: Digestion of polymers into monomers via hydrolysis reactions. B1.1.4: Form and function of monosaccharides. B1.1.5: Polysaccharides as a energy storage compound. B1.1.6: Structure of cellulose related to its function in plants. B1.1.7: Role of glycoproteins in cell recognition B1.1.8: Hydrophobic properties of water. B1.1.9: Formation of triglycerides and phospholipids by condensation reactions. B1.1.10: difference between saturated, monounsaturated and polyunsaturated fatty acids. B1.1.11: Triglycerides in adipose tissue as a storage of energy and insulation. B1.1.12: Formation of the phospholipid bilayer due to the hydrophobic and hydrophilic regions of phospholipids B1.1.13: The ability of steroid hormones to pass through phospholipid bilayers.
iGCSE (0610) Biology: Revision checklist topics 1-21
AmenghisAmenghis

iGCSE (0610) Biology: Revision checklist topics 1-21

(2)
This bundle contains 21 comprehensive checklist for the Cambridge iGCSE Biology syllabus. Each checklist contains a detailed breakdown of the content students are expected to know. The checklist use a RAG system (Red, Amber, Green) which students use to evaluate their understanding: Red: Students is not familiar with the objective and need to revise Amber: Student is somewhat familiar with the objective but still need to revise Green: Student is confident with the objective. These checklist are fantastic for supporting students with their revision for either end of year exams, end of topic revision or for their actual iGCSE.
IB Biology: B2.1 Membranes and membrane transport (first exams in 2025)
AmenghisAmenghis

IB Biology: B2.1 Membranes and membrane transport (first exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B2.1 Membranes and membrane transport in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 62 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Videos Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B2.1: Describe the formation of sheet-like bilayers in water by amphipathic lipids. B2.2: Explain the reasons behind the selective permeability of the lipid bilayer. B2.3: Discuss the movement of molecules by diffusion across the lipid bilayer. B2.4: Identify integral and peripheral proteins. B2.5: Discuss the role of aquaporins in transporting water. B2.6: Describe the structure and role of channel proteins. B2.7: Explain the importance of pump proteins in active transport. B2.8: Explain the role of facilitated diffusion and active transport in the selective permeability of membranes. B2.9Describe glycoproteins and glycolipids with respect to their structure and function. B2.10: Draw the fluid mosaic model of membrane structure. B2.11:Describe the role of lipids in membrane fluidity. B2:12: Discuss the role of cholesterol in membrane fluidity. B2.13: Differentiate between exocytosis and endocytosis. B2.14: Describe the role of gated channels. B2.15: Explain the mechanisms of direct active and indirect active transport. B2.16: State the role of cell-adhesion molecules. B2.17:  Identify the different types of cell junctions.
iGCSE Biology (Cambridge): B6-10 revision lessons
AmenghisAmenghis

iGCSE Biology (Cambridge): B6-10 revision lessons

(0)
This revision PowerPoint contains 68 slides and is perfect to prepare students for their end of year exams or their final iGCSE. This can be used to deliver several lessons, or given to students for independent revision. This resources contains fantastic diagrams and key information in a student friendly manner. The topics covered in this resource include: Plant nutrition Human nutrition Transport in plants Transport in animals Disease and immunity
IB Biology: B3.2 Transport (first exams in 2025)
AmenghisAmenghis

IB Biology: B3.2 Transport (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B3.2 Transport in the new IB Biology specification. YouTube video is a preview of the full resource (does not include all slides) This Powerpoint consists of 100 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips/Reflections Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B3.2.1:Describe the structures of the arteries, capillaries and veins and explain how they are adapted for their functions. B3.2.2: Outline different methods of measuring pulse rate. B3.2.3: Outline the causes and consequences of occlusion of the coronary arteries. B3.2.4:Explain how water is transported from the roots to the leaves during transpiration. B3.2.5: Outline the adaptation of the xylem vessels for the transport of water. B3.2.6: Draw and annotate plan diagrams from micrographs showing the distribution of tissues in a transverse section of the stem of a dicotyledonous plant, and dicotyledonous root. B3.2.7: Describe how tissue fluid is released and taken back up by the capillaries. B3.2.8: Compare and explain the composition of plasma and tissue fluid. B3.2.9: Outline how excess tissue fluid is drained into lymph ducts. B3.2.10: Compare the single circulation of bony fish to the double circulation of mammals. B3.2.11: Explain the adaptations of the mammalian heart for delivering pressurised blood to the arteries. B3.2.12: Outline the stages of the cardiac cycle. B3.2.13: Explain how root pressure is generated in xylem vessels B3.2.14: Outline the adaptations of phloem sieve tubes and companion cells for the translocation of sap.
iGCSE/GCSE Physics: Lenses
AmenghisAmenghis

iGCSE/GCSE Physics: Lenses

(1)
Excellent resource suitable for both iGCSE/GCSE Physics syllabus. The lesson includes a starter tasks, videos, student friendly content and questions with answers. Lesson will take 2-3 hours to teach. The content covered includes: Recap of refraction Converging/convex lens: Explanations and how to draw diagrams Step by step instructions on how to draw lens diagrams using convex lens Diverging/concave lens: Explanations and how to draw diagrams Step by step instructions on how to draw lens diagrams using concave lens Calculating magnification using lens diagrams. Refractive index: Snells law Internal reflection and Total internal reflection Calculating the critical angle
IB Biology Theme/Unit D: Continuity & Change  (first exams in 2025)
AmenghisAmenghis

IB Biology Theme/Unit D: Continuity & Change (first exams in 2025)

12 Resources
This bundle contains all the resources you need to teach Theme/Unit D: Continuity & Change: D1.1: DNA replication D1.2: Protein synthesis D1.3: Mutations and gene editing D2.1: Cell and nuclear division D2.2: Gene expression D2.3: Water potential D3.1: Reproduction D3.2: Inheritance D3.3: Homeostasis D4.1: Natural selection D4.2: Stability and change D4.3: Climate change As part of the new IB specification. This bundle contains: Over 800 slides which cover all the content stipulated by the IB. Student questions with answers Checklist Clear diagrams Research tasks Questions and answers This is ready to teach as soon as you download it!!
IB Biology A1.1 Water (First exams in 2025)
AmenghisAmenghis

IB Biology A1.1 Water (First exams in 2025)

(1)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the A1.1 water in the new IB Biology specification for both HL and SL. This Powerpoint consists of 43 slides and contains the following: Starter task All information is clearly presented Student tasks with answers All key terms Notes for students Exam style questions with answers Student checklist (great for revision at the end of the unit) The following content is covered: A1.1: Water as a medium of life A1.2: Hydrogen bonds are a consequence of polar covalent bonds within a water molecule. A1.3: Cohesion of water molecules due to hydrogen bonds and the consequences for organisms A1.4: Adhesion of water molecules to polar or charged materials and the impact for organisms. A1.5: Solvent properties of water linked to its role as a medium for metabolism and transport in plants and animals A1.6: Physical properties of water and the consequences for animals in aquatic habitats. A1.7: Extraplanetary origins of water on Earth and reasons for it´s retention (HL ONLY) A1.8: Relationship between the search for extra-terrestrial life and the presence of water (HL ONLY)
IB Biology C4.1: Populations and Communities (first exams in 2025)
AmenghisAmenghis

IB Biology C4.1: Populations and Communities (first exams in 2025)

(0)
This PowerPoint contains everything you need to teach the Theme/Unit C4.1 populations and communities in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of over 80 slides and contains the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Exam style questions Summary The following content is included: C4.1.1: Define the term population. C4.1.2: Outline reasons for estimating population samples. C4.1.3: Analyse and explain the importance of using random sampling techniques in ecological studies. C4.1.4: Outline how quadrat sampling is used to estimate the population size for sessile organisms. C4.1.5: Outline how the capture-mark-release-recapture method and the Lincoln index are implemented to estimate the population size of a motile species.  C4.1.6: Define carrying capacity and explain why population growth slows down as the carrying capacity is reached. C4.1.7: Distinguish between density-dependent and density-independent limiting factors. C4.1.8: Compare and contrast exponential and sigmoidal population growth models. C4.1.8: Evaluate the use of models as representations of natural phenomena. C4.1.9: Describe the impact of intraspecific competition and cooperation on the survival and reproduction of a population. C4.1.10: Define communities as diverse collections of populations that interact and contribute to the functioning of ecosystems. C4.1.11: Distinguish between multiple interspecific interactions. C4.1.12: Discuss the ecological significance of interactions between species. C4.1.13: Outline examples of herbivory, predation, competition, parasitism, pathogenicity and mutualism. C4.1.14: Evaluate the impact of invasive species on endemic species. C4.1.15: Outline the role of human activities in the introduction and spread of invasive species. C4.1.16: Assess the presence of interspecific competition using different testing methods. C4.1.17: Apply the chi-squared test to determine an association between species. C4.1.18: Interpret the results of a chi-squared test to generate accurate conclusions. C4.1.19: Evaluate the validity of the chi-squared test as a statistical method for analysing associations between categorical variables. C4.1.20:Evaluate the influence of predator–prey interactions on population dynamics using real case studies. C4.1.21: Discuss the implications of top-down and bottom-up control in population regulation within communities. C4.1.22: Compare and contrast allelopathy and antibiotic secretion mechanisms of competitive advantage in different organisms
IB Biology Complete course bundle (first exams 2025)
AmenghisAmenghis

IB Biology Complete course bundle (first exams 2025)

(0)
This bundle contains all the resources you need to teach the new IB Biology specification. It includes 40 fully resourced units of work and assessment bundles, including: A1.1: Water A1.2: Nucleic acids A2.1: Origins of cells A2.2.: Cell structure A2.3: Viruses (HL only) A3.1: Diversity in organisms A3.2: Classification and Cladistics A4.1: Evolution and speciation A4.2: Ecosystems B1.1: Lipids & Carbohydrates B1.2: Proteins B2.1: Membranes & transport B2.2: Organelles and Compartmentalisation B2.3: Cell specialisation B3.1: Gas exchange B3.2: Transport B3.3: Muscles & motility B4.1: Adaptations to environments B4.2: Ecological niches C1.1: Enzymes C1.2: Respiration C1.3: Photosynthesis C2.1: Chemical signalling (HL only) C2.2: Neural signalling C3.1: Integration of body systems C3.2: Defence against disease C4.1: Populations and communities C4.2: Transfer of energy and matter D1.1: DNA replication D1.2: Protein synthesis D1.3: Mutations and gene editing D2.1: Cell and nuclear division D2.2: Gene expression D2.3: Water potential D3.1: Reproduction D3.2: Inheritance D3.3: Homeostasis D4.1: Natural selection D4.2: Stability and change D4.3: Climate change This bundle contain the followings: All the information the IB have included in the new spec. Clear diagrams Student friendly content Summary videos Student research tasks Clearly identified HL and SL content Student checklist Summary Now includes end of unit assessments for Theme A (9 assessments), Theme B (10 assessments) and Theme C (10 assessments). Assessment bundles for Theme D will be added shortly. **All lessons can be bought individually from my store, but this resource provides a saving of over 80GBP (too many files to form a bundle) ** Note: Please leave a review, this would help other educators make better informed decisions.
IB Biology: B3.3  Muscle and Motility (first exams in 2025)
AmenghisAmenghis

IB Biology: B3.3 Muscle and Motility (first exams in 2025)

(0)
This lesson can be purchased as part of the IB Complete course bundle (first exams 2025) at a heavily discounted price, formed of 40 fully resourced lessons, end of topic exams and student checklists. It can be found here This PowerPoint contains everything you need to teach the B3.3 Muscle and motility in the new IB Biology specification. **YouTube video is a preview of the full resource (does not include all slides) ** This Powerpoint consists of 68 slides and contains the followings: All the information ( HL) the IB have included in the new spec. Exam tips Clear diagrams Student research tasks Clearly identified HL and SL content Student checklist Summary The following content is included: B3.3.1: Recognise the concept of movement in different species. B3.3.2: Outline the structure of a sarcomere. B3.3.3: Explain how a sarcomere contracts. B3.3.4: Outline the role of titin and antagonistic muscles in muscle relaxation. B3.3.5: Describe the structure and function of motor units in skeletal muscles. B3.3.6: Outline the role of the skeleton as anchorage for muscles and as levers. B3.3.7: Explain the role of the different components of a joint. B3.3.8: Compare the range of motion of a joint. B3.3.9: Explain the antagonistic action of the internal and external intercostal muscles. B3.3.10: Give examples of reasons for locomotion. B3.3.11: Describe adaptations for swimming in marine mammals.
iGCSE/GCSE Biology: Mitosis and Meiosis
AmenghisAmenghis

iGCSE/GCSE Biology: Mitosis and Meiosis

(0)
This resource is perfect for teaching meiosis and mitosis to a year 10/11 class studying GCSE or iGCSe biology. The lesson contains: Starter tasks Recap tasks All key information for explaining mitosis and meiosis Differeneces between the two forms of cell division.
GCSE/iGCSE Biology: Stem cells
AmenghisAmenghis

GCSE/iGCSE Biology: Stem cells

(0)
This resource is perfect for a Year 9/10 class studying GCSE Stem cells. The lesson contains a starter tasks, recap on prior knowledge, student tasks with answers, exam style questions and research tasks. The following content is covered: Engaging starter with videos Student research tasks Notes on the different types of stem cells Therapeutic cloning Use of stem cells to cure blindness Ethics of stem cells Stem cells in plants Exam style questions Plenary tasks