# Mr. Thompson's Shop

I'm an NQT+2 who teaches Maths in Dorset. I've taught a bit of German in the past so you'll find more than just Maths resources on my page!

Home feed

My list

Courses
My Jobs
Job alerts
My CV
Career preferences
Resources
Author dashboard
Settings

Edit account
Log out
I'm an NQT+2 who teaches Maths in Dorset. I've taught a bit of German in the past so you'll find more than just Maths resources on my page!

76Uploads

124k+Views

95k+Downloads

I'm an NQT+2 who teaches Maths in Dorset. I've taught a bit of German in the past so you'll find more than just Maths resources on my page!

These are sets of starter questions that I have used with my Year 11 (Foundation) and Year 10 (borderline Higher/Foundation) classes this year. Each set of starters contains between 5 and 10 lessons worth of starters that test the same topics each lesson. Solutions are provided to all questions.
The cover image shows the format of all starters.
Topics tested are:
Year 11 Set 1: Expanding brackets, collecting like terms, solving equations, prime factorisation, nth term of arithmetic sequences, percentages of amounts, substitution & sharing in a ratio.
Year 11 Set 2: Averages, rounding, division, FDP, multiplying and dividing fractions, sharing in a ratio, factorising quadratics, expanding double brackets, mixed numbers and improper fractions, fractions of amounts, simplifying fractions.
Year 11 Set 3: Multiplying fractions by integers, column addition, exterior angles of polygons, ordering negatives, fractions of amounts, solving equations, ratio and probability.
Year 11 Set 4: Simplifying expressions, expressing one quantity as a fraction of another, standard form, multiplying mixed numbers, recognising arithmetic and geometric sequences, recognising parallel lines, percentage increase.
Year 11 Set 5: Finding and using the nth term of an arithmetic sequence, converting mixed numbers to improper fractions, expanding double brackets, solving quadratics, multiplying and dividing decimals, probability.
Year 11 Set 6: Solving equations (xs on both sides), number facts, calculating with negatives, ratio problems, simultaneous equations.
Year 10 Set 1: Substitution, expanding double brackets, solving equations, significant figures, simplifying expressions, estimating square roots, index laws.
Year 10 Set 2: Angles in parallel lines, angles in polygons, averages, index laws, recurring decimals, solving equations.
Year 10 Set 3: Volume of cuboids, geometric notation, simplifying expressions, calculating with negatives, percentage increase and decrease, algebraic fractions, ordering fractions, solving equations.
Year 10 Set 4: Re-arranging formulae, standard form, sharing in a ratio, factorising quadratics, expanding single brackets, substitution, estimation, multiplying and dividing decimals, index laws, expanding double brackets.

8 Time Series graphs and questions to accompany them. As well as questions on basic graph reading skills, I’ve also included questions that test other skills, for example averages, percentage increase, and writing one amount as a fraction of another. Solutions to all questions are provided.
It’s possible to get all questions on one doubled-sided piece of A4 if you print 2 pages per sheet.
Apart from the football-related graphs, all data is completely fictional!

A Bronze, Silver, Gold differentiated resource. Students are given a variety of fractions, decimals and percentages which they must place into a square grid, ensuring that every row and column is in ascending order. This hopefully makes quite a dull topic a little more interesting!
There are multiple solutions to the puzzles so I haven’t provided answers. However, to make it work, the smallest value must go in the top left box, and the largest value must go in the bottom right box.

A set of questions I put together for my Year 11 Foundation group. I designed them to be similar to Question 9 on AQA Practice Practice Set 4 Paper 3 for the new 9-1 GCSE. Solutions are provided.

The lesson starts with a quick recap of square and cube roots which all have integer values.
Students are then asked what the square root of 32 is. It's not an integer, but we can find an approximate value by determining which 2 integers its value lies. Some examples of how to do this are given, then there are some basic fluency questions.
To make things a bit more interesting/challenging, there is also some work on solving basic quadratics provided. Rather than leaving the answers as a surd, I get pupils to give me approximate answers, so that they get some more practice estimating square roots!
Answers to all questions are given, and no printing is required.

UPDATED 31/03/18: Changed the fractions in each puzzle so that they’re not pixelated and difficult to read when printed.
A Bronze/Silver/Gold differentiated resource where pupils are given a list of fractions and a square grid. They have to put the fractions in the grid so that every row and column is in ascending order. The suggested method for doing so is to find a common denominator.
No solutions are provided as there are many possible solutions. However, the smallest fraction must always go in the top left corner, and the largest in the bottom right.

I wanted something a bit more challenging for my more able Year 7s on the topic of ‘converting between Mixed Numbers and Improper Fractions’, so I put together this activity. Students are given a sequence of Mixed Numbers and Improper Fractions, and must tell me what proper fraction must be added or subtracted at each step to reach the next number in the sequence. Solutions are provided.

A basic worksheet to help my Year 9s understand that just because 12 parts of a shape are shaded, that doesn’t necessarily mean 12% of the shape is shaded! I got my class to first of all determine the fraction shaded, and then change the denominator to 100 to determine the percentage shaded.
It comes in 2 parts - in the first part, the denominators of the fractions multiply easily up to 100. In the second part, they don’t, e.g. 18/40, so they need to be simplified first.
Solutions are provided.

Having seen exam questions in the new GCSE that combine angles and algebra, I designed the following worksheet to challenge my top set Year 10 group. Students have to determine the value of x in each question. Later questions go beyond what I think we’re likely to see at GCSE. Answers are provided.

Students have to find a path crossing left to right through the maze that only goes through correct answers. Diagonal moves are not allowed. 2 copies of the maze are provided per A4 sheet.
Types of errors included:
Forgetting to multiply the second term
+/- mixed up
x multiplied by x is 2x
Variable changes
Solution provided.

Students have to determine the roots, y-intercept and turning point of each of the given quadratic graphs using an algebraic method. The graphs are not drawn accurately.
Solutions are provided.

A Bronze/Silver/Gold differentiated resource where pupils are given a list of decimals and a square grid. Pupils have to put the decimals into the grid so that each row and column is in ascending order.
In Bronze, the integer part of each decimal is the same. In Silver, the integer parts are different. In Gold, negatives are introduced. The grids get progressively larger as you move from Bronze to Gold as well.
Each puzzle has multiple solutions, but I've provided one possible solution to each.

A set of questions I designed for my foundation group on determining coefficients in order to produce identities. Answers are provided.

A couple of activities on Frequency Trees (aimed at KS3). The worksheets are provided in pdf and Word, in case you want to make any edits. Solutions are provided.
In “complete using the clues”, students are given 3 blank frequency trees, and 4 clues to go with each. They must use the clues to fill in each frequency tree. This requires some basic knowledge of fractions of amounts and ratio.
In “true or false”, students are given a partially completed frequency tree and must fill in the remainder - this requires some basic number facts. Using their completed frequency tree, they must then decide which of the 13 statements at the bottom of the page are true. This will require some knowledge of fractions of amounts, percentages of amounts, and ratio.

A basic worksheet that covers all the content on Exact Trigonometric Values required at GCSE level. All of the triangles are right-angled triangles, even though the right-angles aren’t marked - sorry!
It mostly contains basic SOH CAH TOA questions, but there are a couple of multi-step problems and a few questions that involve manipulating surds.
All the answers have been jumbled up at the bottom, so students can check as they go along. All answers have been fully simplified and the denominator has been rationalised.

A task I used with more able Year 8 students. Students are given decreasing arithmetic sequences - but most of the terms are missing. They must first determine the missing terms, and then work out the nth term.
The gaps that indicate missing terms are quite small, sorry, so you may want to get students to copy out the sequences into their books. You get 2 copies of the activity on one sheet of A4. Solutions are provided - the completed sequences and their nth terms are in separate documents.

Suitable for higher-attaining GCSE students who are revising Index Laws. Logarithms are not needed to solve these equations - they can all be solved by making the base the same on both sides, and then setting the powers equal to each other. Solutions are provided.

A basic worksheet on plotting straight lines of the form ax + by = c. It is differentiated into 3 sections. Bronze has equations of the form x + y = c. Silver has equations of the form ax + y = c or x + by = c. Finally, Gold contains the most general form ax + by = c.
A Table of Values is given for each equation, and axes are pre-drawn. Solutions are provided.

A treasure hunt based on ratio questions like: Hugh and Kristian share some money in the ratio 9:7. Hugh gets £10 more than Kristian. How much does each person get?
Students pick a starting point, answer the question, and look for their answer at the top of the next card. They should end up back at their starting point if they get all the questions correct. Solution provided.

This resource could be used in either a lesson on Percentages of Amounts, or converting Percentages into Fractions (which is what I used it for).
Students are given rectangular grids of various sizes, and must shade a given percentage of the grid. Solutions are provided (although obviously it doesn’t matter which of the boxes are shaded, just that the correct number are!)