Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
This is a KS3 Biology lesson covering the function of muscles, the names of some major muscles in the human body, antagonistic muscles pairs and a practical to measure muscle fatigue. This lesson also comes with two alternative student led practical investigations.
This resource contains:
Teacher powerpoint (with teacher delivery notes, interactive plenary, challenge tasks throughout and careers links)
Student worksheet (For practical Option 1) (PDF and editable word)
Lesson Objectives:
Describe what a muscle is and give some examples
Describe how muscles cause movement in the body
Describe how antagonistic muscles control movement at a joint
Investigate the strength of muscles
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Risk assessment for class practicals
Printable practical instruction cards
Risk assessments for teacher demonstrations
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Describe what an exothermic and endothermic reactions is in terms of heat energy transfer
Give and identify examples of endothermic and exothermic reactions in everyday life
Identify reactions as exothermic or endothermic from measuring temperature changes in practical investigations
This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This bundle contains the lessons, powerpoints and all relevant resources for teaching the Separate Science GCSE Chemistry AQA content on electrochemical cells and fuel cells.
This bundle contains 3-4 lessons of content including:
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
Lesson 3/4: What are Fuel Cells?
Lesson Objectives:
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Identify reactants and products in a word equation
Write word equations for different reactions
Turn word equations into sentences
Describe and explain why we use word equations in chemistry
This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This lesson contains AFL tasks which require mini-whiteboards, but can be adapted if these are not available.
A lesson covering instrumental analysis and flame emission spectroscopy for the AQA Triple Chemistry GCSE specficiation. Applicable to both higher and foundation candidates.
Lesson Objectives
Know what instrumental techniques are
Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests)
Interpret flame emission spectra to identify unknown elements in a mixture
Lesson Resources include:
Lesson powerpoint - including starter, example spectra, spectra analysis example and advantages/disadvantages task
Exam questions covering instrumental analysis, flame spectra analysis, and ion identification questions with full mark schemes.
A comprehensive, engaging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher delivery notes in “notes” section
Student led lesson worksheet
Teacher answer sheet
Practical Risk Assessment
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Objectives:
Students will be able to…
Describe what physical changes and chemical reactions are
Know the different signs of a chemical reaction taking place
Class different examples as either physical changes or chemical reactions
Describe the difference between a physical change and chemical reaction
This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
Preview video of resources: https://youtu.be/WWaqwYbo6IY
A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations.
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars.
Lesson Objectives
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
A quick and simple student led activity designed for AQA GCSE Chemistry (Triple and Double award) explaining how crude oil is formed from plankton.
Students should put the cartoon panels in the right order, then match the correct description to each panel.
This can be a cut and stick activity or a numbering/line drawing activity.
Good for SEN and students in need of visual cues and support.
Resource download includes PDF and Editable Powerpoint versions.
This lesson is the third lesson in the “Space” topic and covers the basics of how our solar system formed. The lesson contains links to online videos, whole class AFL tasks to assess understanding and two independent tasks for students to complete.
This lesson is designed to be easy to teach, student led and is ideal for non-specialist teachers.
This Lesson Contains:
Lesson powerpoint, including activity delivery instructions for teachers, full answers, AFL whiteboard task and discussion activities
Student Gap fill summary worksheet (PDF) AND answer sheet (PDF)
Student crossword activity worksheet (PDF) AND answer sheet (PDF)
Lesson Objectives:
Describe how the Solar System formed
A full lesson designed for GCSE chemistry AQA specification.
This lesson covers the case study of the extraction of aluminium oxide, the role of cryolite, what happens to the aluminium and oxide ions at the electrodes, and the need for the replacement of the positive electrode.
This lesson contains
A lesson powerpoint including all useful youtube video links, interactive plenary multiple choice quiz, electroplating challenge task and complete answers.
A guided reading activity with quesitons and complete answer sheet (PDF and editable versions)
An alternative information hunt sheet to be used with videos and/or the AQA GCSE Chemistry textbook, with complete answers (PDF and editable versions)
Video clip to aid in completion of both sheets
Lesson Objectives
State two reasons why extracting aluminium oxide from its ore is expensive
Describe why cryolite is added to aluminium oxide during electrolysis
Describe and explain what happens to ions at the positive and negative electrode (and give relevant half equations (Higher only))
Explain why the positive electrode must continually be replaced
A comprehensive, engaging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Elements, Compounds and Mixtures printable decision tree
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Describe what a mixture is
Give examples of mixtures in every day life
Identify mixtures from particle diagrams and examples
This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This lesson contains AFL tasks which require mini-whiteboards and molymods, but can be adapted if these are not available.
This lesson covers what longitudinal and transverse waves are, the features of both kinds of waves, examples of these waves and what happens when waves meet barriers or each other. This is a perfect introduction lesson to KS3 topic on sound and waves.
This Lesson Contains:
Lesson powerpoint, including instructions for key demonstrations of both types of waves, full answers, plenary tasks, AFL whiteboard and discussion activities
Student worksheet (PDF and editable version)
Student worksheet answers sheet (PDF and editable version)
Lesson Objectives
Name the two different types of waves and label their features
Give an example of each kind of wave
Describe what happens when waves hit a barrier
Describe what happens when waves superimpose
This is a KS3 physics lesson covering what forces are, common forces and identifying them in simple examples, contact vs non-contact forces, and how to measure forces.
This resource contains:
Teacher powerpoint (with teacher delivery notes, practical investigation, mini-whiteboard afl quizzes, and challenge tasks throughout)
Matching forces and descriptions worksheet (PDF and editable versions)
**Lesson objectives: **
Explain what forces are
Compare different types of forces
Describe how to measure forces and give the unit of force
This is a KS3 physics lesson covering how do draw and label basic force diagrams.
NOTE: this lesson doesn’t discuss size of force arrows, but focuses on drawing force arrows touching objects in the correct places and going in the correct direction.
This resource contains:
Teacher powerpoint (with teacher delivery notes, “I do, we do, you do” structured delivery task, plenary AFL quiz, and full work through answers animated into each slide)
Student worksheet (PDF and editable versions)
Student worksheet answers (PDF and editable versions)
Lesson objectives:
Describe how forces are represented
Identify the direction a force acts on an object
Draw and/or label force arrows on diagrams for simple example
A comprehensive, engaging, challenging, and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind.
This lesson covers content from GCSE AQA Chemistry and Combined Science Trilogy.
It covers the properties, structure and bonding in graphite and diamond, as well as explaining the key properties of diamond and graphite (electrical conductivity, melting point, hardness) to its structure and bonding.
This lesson contains:
Lesson powerpoint - including teacher notes, delivery instructions and answers in “notes” section
Bank of exam style questions on graphite and diamond taken from past AQA papers with mark schemes (PDF and editable versions)
Printable images of graphite and diamond for students to annotate (PDF and editable versions)
Lesson resources contain:
In-built challenge tasks throughout
AFL mini-whiteboard tasks throughout
In-built scaffolded learning for lower abilities and alternative task for lower ability classes
Colour coding throughout to aid EAL, SEN and other learners
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Full answers to all questions (mostly automated into slides to make it easier for you to deliver)
Objectives:
Students will be able to…
State some properties of diamond and graphite
Compare the properties of diamond and graphite
Compare the structure and bonding in diamond and graphite
Explain the similarities and differences in the properties of diamond and graphite in terms of structure and bonding
A comprehensive, complete, engaging and challenging set of lessons and activities to teach students the basics of elements, compounds, mixtures and chemical formulas. This scheme/package is designed with non-science/non-chemistry specialist teachers in mind!
Lessons included in this bundle:
Elements and Compounds
Chemical Formulas
Counting atoms in a Formula
Pure Substances
Mixtures
Included in each lesson:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student-led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built stretch and challenge tasks throughout
In-built scaffolded learning for lower abilities
Various AFL activities to assess progress and understanding that you can tailor to fit any class or available resources (these include “think, pair, share”, molymod activities, mini-whiteboard quizzes)
Relevant risk assessments for any practical work (updated as of March 2023)
By the end of the topic, students will:
Know what an “element” and a “compound” is
Describe the difference between an element and a compound
Know what an “atom” and a “molecule” are
Describe the difference between an atom and a molecule
Draw/make particle diagrams and models to represent elements, compounds, single atoms and molecules
Understand why scientists use chemical symbols to represent elements
Identify simple elements from their chemical symbols
Identify elements in a chemical formula
Classify chemical formulas as elements or compounds
Count the number of atoms in a basic formula
Identify elements in a chemical formula
Count the number of atoms in formulas containing subscripts
Count the number of atoms in formulas containing multipliers
Describe what a pure substance is
Identify examples of pure substances in everyday life
Identify pure substances from particle diagrams and examples
Carry out a practical investigation to identify pure substances
Describe what a mixture is
Give examples of mixtures in everyday life
Identify mixtures from particle diagrams and examples
Draw/make models representing mixtures
An interactive powerpoint resource designed for distance learning from home.
Students can work their way through questions on the powerpoints and all answers are revealed within the slides.
By the end of this resource, students should be able to:
Know how an acid reacts with metals, metal oxides (bases), metal hydroxides (alkalis), and metal carbonates
Write general equations, word equations and balanced symbol equations for reactions of acids
HIGHER – Be able to write ionic equations for the reactions of acids
NOTE: Students should already have some idea how to balance an equation and work out the formula of an ionic compound before attempting this lesson.
Resource designed for distance learning - GCSE Chemistry AQA - Chemical Changes - Acids and Alkalis
Contains links to useful youtube videos and extension acitivites
Students should be able to:
Identify common acids and alkalis
Know what ions are found in acids and alkalis
Know what an indicator is and give pros and cons for each
Resource contains a PDF of a blank mechanism map for AS chemistry students studying the new Edexcel syllabus (2016 onwards).
There is a blank and completed version of the map containing all reactions, mechanisms, conditions etc… that students should know for AS Organic Chemistry (Topic 6)