Hero image

HB science resources

Average Rating3.61
(based on 27 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

527Uploads

68k+Views

39k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
The Motor Effect Flemings left hand rule
hbscienceresourceshbscienceresources

The Motor Effect Flemings left hand rule

(0)
A comprehensive lesson which teaches students about Fleming’s Left Hand Rule, the motor effect and applying this to a simple motor. Students will also be able to use the F = BIL equation quantify the amount of force experienced by a wire. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use and apply the left hand rule in order to justify the movement of a wire within a magnetic field. By the end of the lesson learners should be able to: Success criteria: I can identify the components of the left hand rule. I can justify the motion of the wire based on the rule. I can explain why motors are able to spin. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Permanent and Induced Magnets
hbscienceresourceshbscienceresources

Permanent and Induced Magnets

(0)
By the end of the lesson learners should be able to: Identify permanent and induced magnets. Describe what’s meant by a permanent and induced magnet. Explain why magnets are used in industry.
Energy Topic KS4
hbscienceresourceshbscienceresources

Energy Topic KS4

5 Resources
A series of lessons targeted for a KS4 audience (yrs 14-16). Lessons require no preparation and are suitable for use with a cover teacher.
IV graphs and Ohms law
hbscienceresourceshbscienceresources

IV graphs and Ohms law

(0)
A comprehensive lesson which teaches students about how IV graphs appear for fixed resistors, filament bulbs and diodes. The lesson also delves into the reasoning behind why these trends arise. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use Ohm’s law to justify the trends seen in IV graphs for a fixed resistor, filament bulb and LED. By the end of the lesson learners should be able to: Success criteria: -Identify generally what happens to current as voltage increases. -Describe how to calculate resistance from a voltage-current graph. -Compare how the resistance changes with load in: fixed resistors, filament bulbs and diodes. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Sankey Diagrams
hbscienceresourceshbscienceresources

Sankey Diagrams

(0)
A comprehension lesson that teaches students how to create and analyse Sankey Diagrams. The concept is introduced in the context of money to firstly engage the students (dirham currency is used as the students I taught were in the UAE, however, this should be fairly simple to understand as it is labelled below). Support sheets are also included to guide students should it be needed. Tasks are differentiated to suit the needs of each learner. Progress checks are placed after each success criteria checkpoint to assess understanding. By the end of the lesson students should be able to: Success criteria: I can critically analyse a Sankey diagram to identify quantifiable components. I can construct and adapt Sankey diagrams I can calculate efficiency of a system from its Sankey diagram. Learning objective: Develop and interpret Sankey diagrams to visualize and analyze complex data flows. Powerpoint contains 33 slides and a lesson plan is also attached.
Orbital Stability and speeds - Astrophysics
hbscienceresourceshbscienceresources

Orbital Stability and speeds - Astrophysics

(0)
A comprehensive lesson which teaches students about orbits, how their instantaneous velocity impacts their orbital radius and stability and how to calculate orbital speeds. Learning objective: Explain why orbital speeds change during elliptical orbits. By the end of the lesson learners should be able to: Success criteria: I can describe how orbital speeds change with the size of the orbit. I can compare the different types of orbits. I can calculate orbital speeds. Powerpoint contains 28 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Detecting Alien Life
hbscienceresourceshbscienceresources

Detecting Alien Life

(1)
By the end of the lesson learners should be able to: State what is meant by the habitable zone. Describe how we can communicate with aliens on other planets. Explain why the light we receive on Earth from a star / exoplanet can tell us about its elemental makeup.
Spacecrafts and Satellites
hbscienceresourceshbscienceresources

Spacecrafts and Satellites

(0)
All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging. By the end of the lesson learners will be able to: Identify the forces acting on objects as they move away from Earth. Describe how to get a satellite into orbit. Evaluate the uses of satellites.
GCSE Revision mats for Physics Paper 2 (Paper 6 combined science Edexcel 9-1)
hbscienceresourceshbscienceresources

GCSE Revision mats for Physics Paper 2 (Paper 6 combined science Edexcel 9-1)

(0)
A collection of 4 revision mats for students to fill (answer sheets are included) - I found it has been useful to zoom in on selected parts on the projector as students check their notes on the sheet. Notes are condensed for the following topics: Electricity, Magnetism, Matter, Forces and Energy. Slides were originally produced on google slides, please open them as google slides to avoid formatting issues.
Electrical Power
hbscienceresourceshbscienceresources

Electrical Power

(0)
By the end of the lesson learners should be able to: State what’s meant by power. Describe how power can be calculated. Explain why changing the time that energy is transferred in affects power.
Electrical Safety
hbscienceresourceshbscienceresources

Electrical Safety

(0)
By the end of the lesson learners should be able to: Identify 2 devices used to deal with electrical overload. Describe how fuses and earthing deal with electrical overloads. Explain the movement of electricity and why earthing works.
Particle Motion in Gases
hbscienceresourceshbscienceresources

Particle Motion in Gases

(0)
By the end of the lesson learners should be able to: State what is meant by pressure. Describe how gas particles interact with the wall of the container. Explain why each of the following increases pressure: Increasing temperature, Increasing the amount of gas particles, Decreasing volume of the container.
Wave speed
hbscienceresourceshbscienceresources

Wave speed

(0)
By the end of the lesson learners should be able to: Identify a wavelength. Describe how to calculate wave speed. Explain why wave speed can change.
Momentum
hbscienceresourceshbscienceresources

Momentum

(0)
By the end of the lesson learners will be able to: Identify the effect of force. Describe how to calculate force. Explain why mass and acceleration affects force.
Alpha Beta and Gamma Radiation
hbscienceresourceshbscienceresources

Alpha Beta and Gamma Radiation

(0)
By the end of the lesson learners will be able to: Identify the 3 types of radiations. Describe properties of each type of radiation. Explain why the atomic and mass numbers change after some radioactive emissions.
Sound Topic KS3
hbscienceresourceshbscienceresources

Sound Topic KS3

5 Resources
A series of lessons aimed towards KS3 students (yrs 11-14). Lessons require no preparation and are suitable for use by a cover teacher.
The Eye and the Camera
hbscienceresourceshbscienceresources

The Eye and the Camera

(0)
A comprehension lesson that teaches students about how the eye and the camera treat light. Students will have the opportunity to create a simple pinhole camera. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Compare how the eye and the camera interpret light differently. By the end of the lesson learners should be able to: Success criteria: Identify parts of the camera and the eye. Describe how light is processed by the camera and the eye. Compare the eye and the camera. Powerpoint contains 15 slides.
The Universe and Our solar system
hbscienceresourceshbscienceresources

The Universe and Our solar system

(0)
A comprehensive lesson which teaches students about the universe and its contents. Students will then progress to learn about our solar system and orbiting objects in space. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Develop an understanding of what makes up our universe. By the end of the lesson learners should be able to: Success criteria: I can identify components of the universe. I can describe our solar system. I can explain why gravity is needed for solar systems to survive. Powerpoint contains 31 slides.