Hero image

Teach Science & Beyond

Average Rating4.88
(based on 24 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

107k+Views

72k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A Level Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

A Level Organic Chemistry (OCR)

18 Resources
17 well structured chemistry lessons plus a BONUS revision summary covering topics in Module 6 of the OCR Specification: **Organic Chemistry ** *Note: Lessons on Analysis: chromatography, qualitative analysis of functional groups and NMR spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds To state the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names To analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Lesson 6: Reactions of Carbonyl Compounds To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids To understand nucleophilic addition reactions of carbonyl compounds with: NaBH4 to form alcohols HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN Lesson 7: Testing for Carbonyl Compounds To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Lesson 8: Carboxylic acids and Esters To explain the water solubility of carboxylic acids in terms of hydrogen bonding To recall the reactions in aqueous conditions of carboxylic acids with metals and bases (including carbonates, metal oxides and alkalis) To know the esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (ii) acid anhydrides with alcohols To know the hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols Lesson 9: Acyl Chlorides and Their Reactions To know how to name acyl chlorides To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2 To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides Lesson 10: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 11: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 12: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 13: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 14: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 15: Condensation Polymers To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Lesson 16: Practical Skills in Organic Synthesis (Yr13) To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Lesson 17: Synthetic Routes in Organic Synthesis (Y13) To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of organic molecules containing several functional groups To create multi-stage synthetic routes for preparing organic compounds Synthetic Routes Revision Summary A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Ionic Product of Water (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

The Ionic Product of Water (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the Ionic Product of Water, Kw By the end of this lesson KS5 students should be able to: LO1: To recall the expression for the ionic product of water, Kw (ionisation of water) LO2: To calculate the pH of strong bases using Kw LO3: To apply the principles for Kc, Kp to Kw Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Condensation Polymers
TeachScienceBeyondTeachScienceBeyond

Condensation Polymers

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers By the end of this lesson KS5 students should be able to: 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
OCR Redox Titrations (Part 1)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Titrations (Part 1)

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations **By the end of this lesson KS5 students should be able to: **LO1: To understand what a redox titration is. LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4- LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Born-Haber Cycles
TeachScienceBeyondTeachScienceBeyond

Born-Haber Cycles

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Born Haber Cycles By the end of this lesson KS5 students should be able to: 1.To construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values 2.To calculate the value for lattice enthalpy from Born Haber Cycle diagrams 3.To calculate other enthalpy change values from Born Haber Cycle diagrams All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Transition Metals & Redox Reactions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Redox Reactions

(1)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Redox Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson By the end of this lesson KS5 students should be able to: LO1. To interpret the redox reactions and accompanying colour changes for: (i) interconversions between Fe2+ and Fe3+ (ii) interconversions between Cr3+ and Cr2O72− (iii) reduction of Cu2+ to Cu+ (iv) disproportionation of Cu+ to Cu2+ and Cu LO2. To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions NOTE: 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions is available here https://www.tes.com/teaching-resource/resource-12637622 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Periodicity: Melting Points
TeachScienceBeyondTeachScienceBeyond

Periodicity: Melting Points

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Periodicity: Melting Points By the end of this lesson KS5 students should be able to: To describe the trend in structure from giant metallic to giant covalent to simple molecular lattice To explain the variation in melting points across period 2 & 3 in terms of structure and bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Directing Groups in Aromatic Compounds
TeachScienceBeyondTeachScienceBeyond

Directing Groups in Aromatic Compounds

(0)
A well structured KS5 Lesson on Directing Groups in Aromatic Compounds. This lesson is a follow up to the lesson on Phenols. This lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A2 Chemistry: OCR Synthetic Routes Revision
TeachScienceBeyondTeachScienceBeyond

A2 Chemistry: OCR Synthetic Routes Revision

(0)
A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Preparation of Amines
TeachScienceBeyondTeachScienceBeyond

Preparation of Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on The Preparation of Amines By the end of this lesson KS5 students should be able to: To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: The Mole and The Avogadro Constant
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: The Mole and The Avogadro Constant

(0)
A complete lesson including starter activity, main work task, bonus task and answers on Avogadro’s constant and calculating moles using the mole equation The lesson begins with a 5-10 minute starter task (DO NOW) on previous KS5 knowledge about relative atomic mass of elements and calculating the relative molecular mass of compounds By the end of this lesson KS5 students should be able to: Know that the Avogadro constant is the number of particles in a mole Calculate the number of moles present in a given mass of an element or compound using the mole equation Rearrange the mole equation to calculate either the number of moles, Mr or mass of an element or compound The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete as well as a 20-30 minute independent work task All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Intermolecular Forces (OCR Chemistry)
TeachScienceBeyondTeachScienceBeyond

Intermolecular Forces (OCR Chemistry)

2 Resources
Two lesson bundle covering the three types of intermolecular forces for the OCR Specification (but also applicable to AQA and Edexcel specification) Lesson 1: Intermolecular Forces (Part 1) covers London forces and Permanent Dipole-Dipole Interactions. In lesson 1 students will: Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions Explain how intermolecular forces are linked to physical properties such as boiling and melting points Compare the solubility of polar and non-polar molecules in polar and non-polar solvents Lesson 2: Intermolecular Forces (part 2) covers Hydrogen Bonding. In lesson 2 students will: Understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF Construct diagrams which illustrate hydrogen bonding Explain the anomalous properties of H2O resulting from hydrogen bonding The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
IR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

IR Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses 2)To understand how infrared spectroscopy works 3)To understand the application of infrared spectroscopy To interpret IR spectra Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Kinetics: Initial Rates and Clock Reactions (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics: Initial Rates and Clock Reactions (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity on initial rates and clock reactions By the end of this lesson KS5 students should be able to: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph To understand how rate-concentration graphs are created To explain how clock reactions are used to determine initial rates of reactions Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Mass Spectrometry in Organic Chemistry
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Mass Spectrometry in Organic Chemistry

(1)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectrometry in Organic Chemistry. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass 2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Equilibrium Constant Kc (Part 2)
TeachScienceBeyondTeachScienceBeyond

The Equilibrium Constant Kc (Part 2)

(1)
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 2) - A L evel OCR Chemistry (Year 13) ** *Note: A full lesson on the Equilibrium Constant Kc (Part 1) -AS Level OCR Chemistry (Year 12) is also available * By the end of the lesson students should be able to: To construct expressions for the equilibrium constant Kc for homogeneous and heterogeneous reactions To calculate units for Kc To calculate quantities present at equilibrium and therefore kc given appropriate data Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Free Radical Substitution (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Free Radical Substitution (AS Chemistry)

(0)
A structured lesson including starter activity, AfL work tasks and lesson slides on free radical substitution reactions By the end of this lesson KS5 students should be able to: 1.To know what a free radical is 2. To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination 3. To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE CHEMISTRY REQUIRED PRACTICAL: Making Salts
TeachScienceBeyondTeachScienceBeyond

GCSE CHEMISTRY REQUIRED PRACTICAL: Making Salts

(0)
A complete lesson including starter activity, risk assessment and post practical plenary questions on Chemistry Required Practical :Preparing a pure, dry sample of a soluble salt from an insoluble oxide or carbonate Lesson includes lab report for students to fill in By the end of this lesson KS4 students should be able to: → Describe a practical procedure for producing a salt from a solid and an acid → Explain the apparatus, materials and techniques used for making the salt → Describe how to safely manipulate apparatus and accurately measure melting points This lesson should be taught as a practical lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Naming  Aromatic Compounds (Aromatic Chemistry)
TeachScienceBeyondTeachScienceBeyond

Naming Aromatic Compounds (Aromatic Chemistry)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds **By the end of this lesson KS5 students should be able to: **1. State the IUPAC name of substituted aromatic compounds **2. Construct the structure of aromatic compounds based on their IUPAC names **3. Analyse the correct numbering system for di and trisubstituted aromatic compounds The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Analytical Techniques (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Analytical Techniques (AS Chemistry)

3 Resources
3 Full Lesson Bundle covering Analytical Techniques (mass spectrometry, IR spectroscopy and combined techniques in organic chemistry) . These lessons follow the OCR specification Lesson 1: Mass Spectrometry in Organic Chemistry **1) Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass **2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures Lesson 2: IR Spectroscopy **1) To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses **2)To understand how infrared spectroscopy works **3)To understand the application of infrared spectroscopy **4) To interpret IR spectra Lesson 3: Combined Spectroscopic Techniques **1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above