Hero image

SWiftScience's Shop

Average Rating4.26
(based on 754 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

797k+Views

461k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Reaction Profiles & Bond Energy Calculations
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reaction Profiles & Bond Energy Calculations

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided. Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles. The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided. Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint. The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided. Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work. The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle
SWiftScienceSWiftScience

NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle

7 Resources
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification. Lessons include: Rates of reaction Reversible reactions Rate of reaction: The effect of catalysts Rate of reaction: The effect of concentration & pressure Dynamic equilibrium & altering conditions Collision Theory: The effect of temperature & surface area. The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Biology - 'Homeostasis' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Homeostasis' lessons

12 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Homeostasis’ unit for the NEW AQA Biology Specification. Lessons include: 1. Principles of homeostasis 2. The human nervous system 3. Reflex actions 4. The endocrine system 5. The control of blood glucose levels 6. Treating diabetes 7. The role of negative feedback 8. Human reproduction 9. The menstrual cycle 10. Controlling fertility 11. Infertility treatments 12. REQUIRED PRACTICAL: Reaction Time The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Plant diseases & responses HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Infection & Response' SoW for the higher tier. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of this lesson is a recap on the plant diseases students should have already covered within the 'infection & response' unit - rose black stop and tobacco mosaic virus. Plants will then be asked to come up with a brainstorm of the symptoms plants may exhibit when they are diseased. Once pupils have discussed this and tried to come up with some ideas you can reveal some of the common symptoms on the PowerPoint slide, along with images and examples. The next slide looks at the ways in which plant diseases can be diagnosed, from gardening manuals to monoclonal antibody testing kits. The next activity focuses on the role of certain minerals in the growth and development of plants, firstly students will draw a table in their book and then they will given a slip of information about one of the mineral ions - nitrates, magnesium or potassium. Pupils will need to walk around the room or swap these slips of paper with people on the same table as them to complete the table, they can then assess their work. The final part of the lesson focuses on plant defence responses, firstly pupils will be shown some diagrams of plants and their defence methods and will be asked to think > pair > share the potential ways plants can defend against disease. Pupils will then be given a card sort with different plant defence mechanisms, students need to sort these into three different categories - physical barrier, chemical barrier, defence against herbivore. Once completed pupils can then assess their work using the answers provided. The final task is an exam-style question on what they have learnt that lesson, pupils of higher ability may want to complete these questions in silence at the backs of their book. Pupils can then self or peer-assess their work. Plenary activity is to write 3 key words, 2 facts and 1 question about what pupils have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Metals & Non-Metals
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Metals & Non-Metals

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the Periodic Table, students will be shown a diagram of the Periodic Table and will be asked to identify whether they think certain elements are metals or non-metals, or even semi-metals (metalloids). This task can the be checked and assessed against the answers provided on the PowerPoint. Next, students will be given part of a table of information on the properties of metals compared to non-metals. They will need to walk around the room and trade information with others in order to successfully complete their own table. Once this task has been completed, students can self-assess their work using the mark scheme provided. Students are now shown a diagram of an iron roof and a copper roof and how this can change over time, students are asked to think about what is happening in these picture & try to identify the chemical reaction. After a short class discussion, the answers to the questions will then be revealed. Students will then be told that non-metals react in a similar way with oxygen, they will then be shown 4 incomplete word equations for the reaction of different non-metals with oxygen. Students will need to complete this equation, this task can the self-assessed using the mark scheme provided. The last activity is a true or false activity, students will need to identify whether the statements about metals/non-metals are true or false. This task can the be marked using the mark scheme provided. The plenary task is an exit card, students will need to write down three key words, one fact and a question to test their peers on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers. Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain. Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work. The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember. The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided. The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Inherited disorders & genetic screening

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution ’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to inherited disorders, particularly the two examples students will need to learn about - polydactyly and cystic fibrosis. Pupils will then be given information on either of these two disorders and will be asked to complete a fact file on the one they have been given using a set of criteria provided. Once they have completed one of the fact files they will need to pair up with someone who did the other fact file to share information. Pupils will then be given further information about the inheritance of these disorders and whether it is controlled by a dominant or recessive allele. Pupils will need to draw genetic diagrams for each of the disorders given a set of example parent genotypes, and work out the probability of the offspring inheriting the condition. The next part of the lesson focuses on embryo screening, firstly pupils are introduced to the two ways in which embryos can be screened for genetic conditions - amniocentesis & chorionic villus sampling. The next task pupils will need to think > pair > share ways in which these two methods which be controversial, identifying the positive and negative effects on the baby and family. For the final activity pupils will be given a set of opinion cards in groups, they will need to read the viewpoints, discuss as a group and write a short summary paragraph on their opinion of genetic screening in embryos. The plenary task is for pupils to write three summary sentences of what they have learnt this lesson using as many key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification. Lessons include: States of matter Forming ions Ionic bonding Giant ionic lattices Covalent bonding Simple and giant covalent structures Metallic bonding & giant metallic structures Nanoparticles The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - Evolution by natural selection
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evolution by natural selection

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a focus on mutations and how they contribute towards genetic variation within a population. Pupils can tag read some information provided in the board and then answer questions in their books, this work can be self-assessed against the mark scheme provided. The next activity involves pupils watching a video about natural selection, using the video they will need to answer questions which again can be self-assessed using the success criteria provided. Pupils will then be shown a slide which demonstrates, with the example of giraffes, how natural selection can ensue within a population of organisms over time. Pupils will then be given a cartoon strip to show how natural selection occurs, they can draw diagrams of any organism they wish to choose and will need to fill in the blanks for the captions below each stage in the process. This work can be self-assessed one complete. The next task pupils need to complete is a card sort describing the steps involved with how head lice become resistant to head lice shampoos, pupils can discuss in pairs to complete this task. Once complete the answers will be revealed, for higher ability pupils they can draw this as a flow diagram in their books as an extension. The final activity is a past-paper question, pupils can complete this in their books. For higher ability pupils you could demand silence and ask for it to be completed at the back of their books as a revision activity, for lower ability pupils you may allow discussion with a partner. The plenary activity involves pupils being provided with the answers to 5 questions, pupils need to think of 5 questions which may link to these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Organisation' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Organisation' lessons

14 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Principles of organisation 2. Enzymes 3. The human digestive system 4. Digestive enzymes 5. The heart 6. The blood 7. Blood vessels 8. Helping the heart 9. Breathing & gas exchange 10. Plant tissues & organs 11. Transport in plants 12. Evaporation & transpiration The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Nutrients & Food Tests
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Nutrients & Food Tests

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the idea of a ‘food pyramid’, students will be given a selection of different foods and will need to consider how often they should be eaten, and so where on the food pyramid they should be placed. Once students have had chance to discuss and arrange their foods on the food pyramid, the answers can be revealed so students can check their work. Next, students are introduced to the idea of different food/drink groups: carbohydrates, protein, fats, vitamins, minerals, water and fibre. Students will each be given a card of information about one of these groups, they will need to walk around the room to share information with their peers in order to complete the summary table in their books. This task can be self-assessed using the mark scheme provided once it is complete. Next, students will consider how much energy different people require. Firstly, some examples will be talked through as a class - e.g. males generally need more energy than women, older people need less energy than younger people etc. Students will then complete a task to assess their knowledge on this topic, which can be marked and corrected using the answers provided once complete. Lastly, students will be introduced to the idea of a food test, they will be asked to consider which types of nutrients are present in a set of food which include: lemonade, crisps, margarine, bread & meat. After students have made predictions, they can then complete the food test investigation (equipment list and method is included). The plenary task requires students to spend a minute or two talking about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a definition on biodiversity, pupils are shown a pie chart of the numbers of different groups of organisms that have been identified to date. The first task is for pupils to consider which numbers correspond to which groups of organisms. Once pupils have discussed in pairs or groups the answers will be revealed, pupils can check their work against the answers provided. The next part of the lesson focuses on how and why scientists quantify biodiversity, pupils are firstly asked why it might be important to map out biodiversity - they can discuss in groups before the answer is revealed on the PowerPoint presentation. A map of the world depicting certain biodiversity hotspots is then shown to students and they are asked a couple of question about this map, pupils will be required to answer these questions in their books and then self-assess their work using the answers provided. Pupils are then asked to think > pair > share their ideas on why it is important to maintain biodiversity, in groups pupils may be given an A3 sheet for them to mind map their ideas onto. Once finished each group can feedback their ideas to the class and a larger mind map could be completed on the white board. Some of the key reasons for maintaining biodiversity cant then be detailed on the PowerPoint presentation for students to assess their work. The last task is for pupils to use information posters placed around the room to answer a set of questions, all on the topic of maintaining biodiversity. Once pupils have spent a good amount of time writing their answers down they should sit in their seats and use the mark scheme provided on the PowerPoint presentation to peer-assess their work. The plenary activity is for pupils to draw a feedback grid in their partners books and write down one positive comment, one negative comment and a question to test their knowledge. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Common problems of the eye HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Common problems of the eye HT

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with an introduction to accommodation, in pairs pupils will be given either information on how the eye focuses on distant objects or on nearby objects. Pupils will have to teach each other about the information they have and complete the questions listed on the PowerPoint slide. Once this task is completed it can be assessed using the mark scheme provided. The next part of the lesson focuses on common defects of the eye, specifically myopia and hyperopia. Pupils will need to use posters of information placed around the room/on their table to complete a fact file on both of these conditions which includes a description of the disease and of the treatments available. Pupils will now consider some of the ways in which these common eye defects can be overcome, pupils will be given a card sort in pairs describing different technologies in treating these conditions. Pupils will need to read these cards and produce a table which sums up the advantages and disadvantages of these treatments. The last activity is an exam-style question which pupils can complete in silence, once finished they can use the mark scheme to self-assess their work. The plenary task is an anagram challenge, pupils should unscramble the words to identify key words they have learnt on the topic of the eye. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - The human kidney HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - The human kidney HT

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an outline on the role of the kidney, pupils are asked recap questions on how water enters and leaves the body, which can be self-assessed using the answers provided. The next slide outlines the main functions of the kidney in controlling water and mineral ion balance, pupils will then need to answer questions on this information. This work can be self-assessed using the answers provided on the following slide. Pupils will then watch a video on how the kidneys work, pupils will need to answer questions whilst watching the video. Once the video is finished they can assess their own work using the answers provided. To summarise what the students have learnt so far they will then copy and complete sentences, filling in the blanks with the key words provided. Again, the answers for this task are provided for pupils to assess their work. The next part of the lesson focuses specifically on the release of ADH from the pituitary gland and it's control over the water balance in the body. Pupils are shown a flow diagram of the responses when water levels either rise too high or fall too low in the body. Pupils will then be given a list of statements and will be asked to recreate their own flow diagram to demonstrate this process. This work can then be assessed using the answers provided. The plenary task is for pupils to come up with three summary sentences about what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Global warming & the impact of change
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Global warming & the impact of change

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is for pupils to think > pair > share the factors which may cause a contribution of carbon dioxide into our atmosphere. Pupils can create a mind map in their books and then discuss their ideas as a table and then as a class. The next PowerPoint slide reveals some of the main factors which contribute to an increase in carbon dioxide levels in our atmosphere, pupils can check their work against these answers. For the next task pupils will be required to watch a video about the greenhouse effect and answer questions in their books, this task can be self-assessed using the answers provided once complete. Using this information pupils will then be asked to fill in the blanks on a diagram depicting the greenhouse effect, pupils will be given captions to write into the correct boxes on their worksheet. This can be self-assessed once it has been completed. Next pupils will be given a set of data on the mean world temperature change from 1960 to present day, students will be required to plot the data on a graph, describe the pattern of the graph and explain why the graph may be showing this pattern. The next part of the lesson focuses on global warming, students will firstly be given a set of questions which they will need to answer whilst watching a video. This work can then be self-assessed using the answers provided. For the very last task pupils will be given a card of information each detailing an environmental factor and it’s impact on living organisms. Pupils will need to wander around the room and share information with each other to complete their table of environmental factors. The plenary task is for pupils to identify what the questions might be for a set of answers provided on the PowerPoint presentation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Meiosis
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Meiosis

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a recap from the previous lesson showing gametes fusing during fertilisation and the changes in chromosome numbers. The first task is for pupils to watch a video and answer a set of questions whilst they are watching, once the video is complete they can assess their work using the mark scheme provided. Pupils will then be given a worksheet with a diagram of meiosis occurring and statements where pupils will need to fill in blanks to complete the correct steps in the process. Pupils can assess their work using the answers provided. Pupils will then be shown the different between diploid and haploid cells and how this can be depicted in a diagram, they will be shown the changes that occur going from two haploid gametes to a diploid zygote. The next activity is for pupils to sort statements into two columns - mitosis or meiosis. Once this activity has been completed pupils can mark their work using the answers available. Pupils will now complete a quick check, pupils will answer questions about the topic of meiosis into their books. For higher tier pupils they can be challenged by completing the questions at the back of their books without using their notes. Once completed the work can either be self-assessed or peer-assessed. The final activity is an exam-style question which higher ability pupils can complete at the back of their books, this can then be assessed usng the mark scheme provided. The plenary activity is for pupils to pick a plenary between summarising the work from the lesson in three sentences or writing a definition for a set of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Treating diabetes
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Treating diabetes

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a quick recap from the previous lesson on the cause and control of diabetes, pupils will need to copy and complete sentences in their books, which can then be self-assessed. Next pupils are given detailed posters of information on the treatments available to patients with type 1 and type 2 diabetes. Pupils will need to read through these posters in pairs/on a table and answer the questions on the PowerPoint slide. Once finished, pupils can self-assess their work using the answers provided. Pupils will now focus on the advantages and disadvantages of different medical cures for type 1 diabetes. In pairs they will be given a set of cards informing them of new advances in treatments available to patients with type 1 diabetes and they will need to create a summary table to weight up the pro’s and con’s of each treatment. The final activity is an exam question on what pupils have learnt so far that lesson, this is accompanied with a mark scheme which pupils can use to mark their work. The plenary activity is an anagram challenge, pupils need to unscramble the letters to spell a key word from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils are firstly given some information, in pairs, on how temperature can affect the rate of decay. They are asked to read through the information and complete a set of questions. Once this task is complete pupils can self-assess their work using the answers provided. The next task is for pupils to think > pair > share ideas about how you could stop or delay the decay process with food. Some images are provided on the PowerPoint slide as a prompt to help students, they can also use the information from the first task to help them come up with ideas. Once pupils have been given time to write their ideas down you can discuss as a group and then reveal the 5 main ways in which foods can be preserved. Pupils will then be given a set of information about each of these preservation methods, they need to use this information plus the information from the first task they completed to explain how each of the methods helps to prevent or delay the decay process. Pupils can then self or peer assess their work once complete. For the next task pupils are asked to use information posters places around the room or on their tables to answer a set of questions about decay & recycling. Once pupils have completed these questions they will need to assess their work using the answers provided. The very last task is an exam question that pupils can either complete in silence at the back of their books - higher ability - or perhaps use the work they have completed this lesson if they are lower ability. The plenary task is for students to write three sentences to summarise what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Bioenergetics' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Bioenergetics' lessons

12 Resources
This bundle of resources contains 9 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Plants tissues & organs 2. Photosynthesis 3. Products of photosynthesis 4. The rate of photosynthesis (limiting factors) 5. Making the most of photosynthesis 6. Aerobic Respiration 7. Anaerobic Respiration 8. The response to exercise 9. Metabolism and the liver The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, exam-style questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Biology - 'Cells' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Cells' lessons

14 Resources
This bundle of resources contains 11 lessons which meet all learning outcomes within the ‘Cells’ unit for the NEW AQA Biology Specification. Lessons included: 1. Cells 2. Specialised cells 3. Eukaryotic and prokaryotic cells 4. Microscopy 5. Chromosomes 6. Mitosis 7. Stem cells 8. Diffusion 9. Osmosis 10. Active Transport 11. Exchanging materials The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks and 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.