pptx, 1001.3 KB
pptx, 1001.3 KB

A structured Year 13 KS5 lesson ( lesson 2 of 2) on Concentration-Time Graphs. Lesson includes starter activity, worked examples and Afl quiz

By the end of this lesson KS5 students should be able to:

  1. To deduce zero & first order reactants from concentration-time graphs
  2. To calculate the rate constant of a first order reactant using their half-life

Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above

Get this resource as part of a bundle and save up to 20%

A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.

Bundle

Kinetics A Level Chemistry

7 Full Lesson Bundle + A Bonus Revision Lesson which covers the Kinetics (How Fast?) chapters from the OCR A Level Chemistry Specification (also suitable for the AQA and Edexcel Spec- see Learning Objectives below) Lesson 1: Order of Reactants Lesson 2: The Rate Equation Lesson 3&4 Concentration-Time Graphs Lesson 5: Initial Rates and Clock Reactions Lesson 6: The Rate Determining Step Lesson 7: The Arrhenius Equation Lesson 8: Revision Lesson Learning Objectives: Lesson 1: LO1: To recall the terms rate of reaction, order, overall order and rate constant LO2: To describe how orders of reactants affect the rate of a reaction LO3: To calculate the overall order of a reaction Lesson 2: LO1: To determine the order of a reactant from experimental data LO2: To calculate the rate constant, K, from a rate equation LO3: To calculate the units of the rate constant Lesson 3&4: LO1: To know the techniques and procedures used to investigate reaction rates LO2: To calculate reaction rates using gradients from concentration-time graphs LO3: To deduce zero & first order reactants from concentration-time graphs LO4: To calculate the rate constant of a first order reactant using their half-life Lesson 5: LO1: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph LO2: To understand how rate-concentration graphs are created LO3: To explain how clock reactions are used to determine initial rates of reactions Lesson 6: LO1: To explain and use the term rate determining step LO2: To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction LO3: To predict the rate equation that is consistent with the rate determining step Lesson 7: LO1: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction LO2: To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT LO3: Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation Lesson 8: This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13) Students will be able to complete three challenging question rounds on kinetics covering: Measuring Reaction Rates Orders of reactants Concentration-time graphs Rate-concentration graphs Clock Reactions Initial rates Arrhenius Equation ***Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above***

£46.97

Reviews

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resourceto let us know if it violates our terms and conditions.
Our customer service team will review your report and will be in touch.