Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

158Uploads

353k+Views

309k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P1 - Electromagnetic Spectrum
NteachNteach

GCSE Physics P1 - Electromagnetic Spectrum

(6)
Complete lesson on Electromagnetic Spectrum/Uses/Risks with key content from AQA Physics. This lesson covers the electromagnetic spectrum, waves uses, wave risk, order and size of waves and mobile risks. Starter uses a fun riddle challenge which pupils enjoyed doing in Generating Electricity and so asked for another. The lesson explores the spectrum by order of identities of waves, wavelength, frequency and energy. A quick task on multipliers, standard form and prefixes helps pupils understand the notation commonly seen on the EM spectrum and also as questioned in exams. A task gets pupils to explore different EM waves using information sheet for them to use to summarise key information. Then mobile phone risk is then discussed along with correlation and causation. Plenary quick quiz and some exam style questions which can be used as mini plenaries to link to exams. More lessons in same format for P1. https://www.tes.com/member/Nteach
GCSE 9-1 AQA Physics - P11.4 - Upthrust and Flotation (How things float)
NteachNteach

GCSE 9-1 AQA Physics - P11.4 - Upthrust and Flotation (How things float)

(0)
New GCSE AQA Physics lesson on ’ Atmospheric Pressure’ written in line with new AQA Physics specification. All questions provided with answers within power point. (Required for GCSE Physics only Higher tier) Lesson Objectives: - Explain how upthrust acts on an object in a fluid. - Identify the key factors that contribute to upthrust of an object in a fluid. - Relate pressure in a fluid to upthrust. - Predict whether a variety of objects will float or sink.
GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method
NteachNteach

GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method

(7)
New GCSE AQA Physics lesson on ' Resolution of Forces' written in line with new AQA Physics specification. All questions provided with answers within power point. The starter provides some simple combination of forces questions to review the subject of resultant forces - one question has two forces acting on different planes which pupils will be unfamiliar with and therefore how to solve - this prompts the lesson. The intuitive resultant force and direction is highlighted but also how we need to calculate exactly what they are. The parallelogram/geometric method is taught step by step with a worked example, this is done a second time with another example but with the class prompted to follow it and do the same on their own paper which also allows for discussion of difference in results. A collection of questions allows pupils to practice use of this method. This method is then used for inclined planes to explain frictional force acting to put object in equilibrium on inclined planes. Review questions again allow pupils to practice this. Lesson Objectives: - Review resolving simple combination of forces. - Identify when forces are acting on different lines/planes. - Calculate the resultant force on an object which has equal forces acting on different lines/planes. - Calculate the resultant force on an object which has unequal forces acting on different lines/planes. A worksheet is not provided as it is best for pupils to work on their own paper to define their own scales for this methodology.
GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)

4 Resources
4 lessons covering the unit of Forces and Pressure for AQA GCSE Physics. Lesson include: Pressure and Surfaces Pressure and Liquids Atmospheric Pressure Upthrust and Flotation Please read individual resources descriptions for each item in the bundle for further detail.
GCSE 9-1 AQA Physics 4.2  - Electricity Unit - All resources/lessons
NteachNteach

GCSE 9-1 AQA Physics 4.2 - Electricity Unit - All resources/lessons

10 Resources
Resources for new GCSE AQA Physics 2016 specification. Bundled lessons cover the Electricity resources content of the GCSE. This includes: - Electric Charges and fields - Current and charge - Potential Different and Resistance - Component Characteristics - Series Circuits - Parallel Circuits - AC/DC - National Grid - Cables and plugs - Electrical Power and potential difference - Electrical currents and energy transfer (charge) For clear detail on aspects of each lesson please review each lesson bundled into the packaged to ensure it meets your requirements. I hope this gives you and your pupils a great start to the new Physics GCSE. I do update each lesson in the bundle with new and varied content as I often revisit lessons to further improve them.
GCSE 9-1 AQA Physics 4.6 - Wave Properties  (whole unit resourced)
NteachNteach

GCSE 9-1 AQA Physics 4.6 - Wave Properties (whole unit resourced)

5 Resources
5 lessons covering the unit of Wave Properties for AQA GCSE Physics. Lesson include: Properties of Waves Reflection and Refraction of Waves Sound Ultrasound Seismic Waves Please read individual resources descriptions for each item in the bundle for further detail.
GCSE AQA Physics - P4.1 - Electrical Charges & Fields (Statics)
NteachNteach

GCSE AQA Physics - P4.1 - Electrical Charges & Fields (Statics)

(2)
Complete AQA GCSE Physics lessons on Electric Charges and Fields. Starter begins with discussion of a popular lightning myth/misconception which will be revisited at the end of the lesson. The structure of the atom is reviewed leading to how atoms can gain a charge and therefore how objects can become charged. The main consists of two simple experiments for pupils to do using safe and simple equipment to explore statics. Students also explore electric fields which exist around charge objects and draw these (as required by new specification) Questions on the Van der Graaf are included with links to videos and a simulator if the teacher doesn't have access to a Van der Graaf. Lesson is consolidated by revisiting the starter reviewing pupil knowledge and also through exam style questions based on the specification and style of sample exam papers content. Lesson Objectives: 1) Describe the structure of the atoms. (D) 2) Explain how an atom can be ‘charged’ and how an object can have a ‘charge’ (C) 3) Investigate how charged objects interact with each other due to electric fields. (B) 4)Apply you knowledge of ‘charges’ to explain static electricity. (A) Note: This lesson is formatted is similar content to previosuly listed 'Statics lesson' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
GCSE AQA Physics - Centre of Mass
NteachNteach

GCSE AQA Physics - Centre of Mass

(2)
New GCSE AQA Physics lesson on ' Centre of Mass' written in line with new AQA Physics specification. All questions provided with answers within power point. Starter simply looks at balancing object on one finger and how intuitively we can know how to do this. Then stability of different shapes is reviewed and again highlighted how we can assess whether something will be stable or not. The physics of this is then applied in terms of centre of mass. The technique to find the centre of mass for a symmetrical shape is detailed and practices with questions. Suspended equilibrium and centre of mass is shown using a hanging bird cage and can also be demonstrated in class with a simple mass and string. Then an experiment is outlined to find the centre of mass of irregular shapes. Centre of mass it then related to real life contexts for practice exam questions. Lesson Objectives: - Explain what is meant by centre of mass. - Find the centre of mass for a simple symmetrical object and explain this position. - Find the centre of mass of an irregular shaped object. - Apply the principle of centre of mass to real-life problems.
GCSE 9-1 - AQA Physics 4.7 - The Motor Effect
NteachNteach

GCSE 9-1 - AQA Physics 4.7 - The Motor Effect

(3)
New GCSE AQA Physics lesson on the motor effect written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: Explain the ‘motor effect’; Recall and use Flemings left-hand rule State what is meant by magnetic flux density Calculate the force on a current carrying wire Detail how a simple electric motor works
GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces
NteachNteach

GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces

(2)
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point. Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box. Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed. To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing. The lesson is concluded with a set of review question. Lesson Objectives: - State what pressure is and be able to calculate it. - Identify the units for pressure. - Explain the relationship between pressure, force and area. - Apply knowledge of pressure to different problems.
GCSE 9-1 AQA Physics 4.5 - Forces and motion
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces and motion

6 Resources
5 Lessons on GCSE AQA Physics 'Forces and Motion. Lessons include: - Forces and acceleration. - Terminal velocity. - Forces and Braking. - Momentum. - Impact Forces. - Forces and Elasticity. Please see individual item listing for details on each individual lesson. ALL lessons have answer keys in the PowerPoint
GCSE Physics P2 - Terminal Velocity
NteachNteach

GCSE Physics P2 - Terminal Velocity

(0)
A completely resourced lesson on GCSE Physics P2 - Terminal Velocity including key content from AQA exam specification and relevant to Edexcel. The starter begins with a question regarding throwing a penny off the Empire State Building - a common myth surrounding this which is dealt with during this lesson on terminal velocity. Forces and size represented by arrows are quickly recapped and related to skydiving which allows for good class discussion. A class activity is detailed which uses just a stopwatch, meter rule and cut-out provided. This task investigates air resistance and it's effect on time to fall to the ground. The conclusions drawn from this can lead to the class to summarise what air resistance is and how it increases and decreases. Terminal velocity is then explained through an animation of a skydive which is summarised by the class. An extended activity uses a v-t graph relating to a skydive with key questions to challenge pupils. The lesson finishes with a TRUE or FALSE quiz and then revisiting the initial started question. More P2 lessons to come
GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids
NteachNteach

GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids

(0)
New GCSE AQA Physics lesson on ’ Pressure in Liquids’ written in line with new AQA Physics specification. All questions provided with answers within power point. The lesson starts with a question on the dangers presented to deep sea divers. How liquids exert a pressure is demonstrated with a visual of a series of containers with different heights of liquid inside whilst highlighting the liquid has mass and therefore weight - this is then linked back to pressure = force/area. The importance of height in relation to pressure is further reviewed with a water bottle that has holes at different heights - the water jets shooting out is then discussed. Finally reviewing the importance of density to mass to weight and therefore pressure leads to the formation of the equation, P= ρgh - practice of the use of the equation is provided by looking at the pressure beneath the sea at different depths. The dangers of deep sea scuba diving are again discussed with the lesson knowledge gained. The lesson is concluded with a set of review question. Lesson Objectives: - Explain how a liquid exerts a pressure. - Explain how pressure exerted by a liquid can be increased. - Explain how pressure varies at different points in liquid. - Calculate the pressure in a liquid column.
GCSE Physics P2 - Distance-time graphs (d-t graphs)
NteachNteach

GCSE Physics P2 - Distance-time graphs (d-t graphs)

(0)
Completely resourced lesson on distance-time graphs with key content from AQA and Edexcel Physics. Lesson begins with a review of the use of graphs to present data and relationships, highlighting key graph vocabulary and trends. Speed, distance and time is briefly recapped with the equation and some simple questions. An exercise in plotting distance-time graphs from a short description allows pupils to understand what different trends mean on a d-t graph by plotting them, themselves. Following this it is explained in detail how a d-t graph gradient calculates speed by relating this clearly to the equation for speed. A class experiment is detailed if you wish to allow your pupils to carry this out but if not another activity following summarises the same concepts through a pre-prepared worksheet. A homework task is included that will require some modelling from the teacher.
GCSE 9-1 AQA Physics - P11.3 - Atmospheric Pressure
NteachNteach

GCSE 9-1 AQA Physics - P11.3 - Atmospheric Pressure

(0)
New GCSE AQA Physics lesson on ’ Atmospheric Pressure’ written in line with new AQA Physics specification. All questions provided with answers within power point. Learning objectives: - Explain what atmospheric pressure is. - Describe a simple model of earth atmosphere and atmospheric pressure. - Identify how atmospheric pressure changes with altitude. - Carry out calculations with atmospheric pressure at different altitudes.
GCSE AQA Physics - P2.1 - Energy Transfer by Conduction
NteachNteach

GCSE AQA Physics - P2.1 - Energy Transfer by Conduction

(3)
New GCSE AQA Physics lesson on 'Energy Transfer by Conduction' written in line with new AQA Physics specification. Choice of two different starters to prompt discussion of heat transfer by conduction. Either looking at cooking using rods through meat or placing ice on different materials to melt. A series of scenarios are shown involving heat conduction which allow pupils to discuss why things feel hot or cold. A class experiment is provided which uses different material rods to identify which one conducts heat quickest. The results of this are then discussed with questions to start promoting good scientific investigation skills. Thermal conductivity is explored by looking at the meaning of each words separately and then together. Pupils are then to put a number of different material in order of thermal conductivity, which is then discussed for common materials which are highly conductive or poorly conductive. This leads onto thermal insulation and some final review questions. Lesson Objectives: 1) Provide definitions for conductors and insulators. 2) Identify common conductors and insulators and explain in relation to thermal conductivity. 3) Relate thermal conductivity to rate of energy transfer. 4) Explain ways in which rate of heat transfer can be reduced.
GCSE AQA Physics - P16.3 - Planet, satellites and orbits
NteachNteach

GCSE AQA Physics - P16.3 - Planet, satellites and orbits

(4)
New GCSE AQA Physics lesson on ‘Planet, satellites and orbits’ written in line with new AQA Physics specification. Lesson Objectives: Identify what keeps objects in orbit. Identify the direction of force on an orbiting object. Explain how the velocity of a body changes as the body moves around its orbit. Explain how an object stays in orbit
Design an Experiment worksheet
NteachNteach

Design an Experiment worksheet

(3)
A worksheet to help pupils design/plan their own experiment/investigation. Some pupils still struggle with the intention of science experiments and each aspect required to carry out a successful experiment. The worksheet which is the same format as the experiment planning sheet poses each aspect as a question for pupils to really think what each aspect is about. This can be used as sheet to complete with a guided experiment allowing pupils to understand what each part of planned experiment is about or it can be used as a guide to help a pupil design an experiment (with some guidance of course)