Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

158Uploads

360k+Views

312k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P1 - Electromagnetic Spectrum
NteachNteach

GCSE Physics P1 - Electromagnetic Spectrum

(6)
Complete lesson on Electromagnetic Spectrum/Uses/Risks with key content from AQA Physics. This lesson covers the electromagnetic spectrum, waves uses, wave risk, order and size of waves and mobile risks. Starter uses a fun riddle challenge which pupils enjoyed doing in Generating Electricity and so asked for another. The lesson explores the spectrum by order of identities of waves, wavelength, frequency and energy. A quick task on multipliers, standard form and prefixes helps pupils understand the notation commonly seen on the EM spectrum and also as questioned in exams. A task gets pupils to explore different EM waves using information sheet for them to use to summarise key information. Then mobile phone risk is then discussed along with correlation and causation. Plenary quick quiz and some exam style questions which can be used as mini plenaries to link to exams. More lessons in same format for P1. https://www.tes.com/member/Nteach
GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)

4 Resources
4 lessons covering the unit of Forces and Pressure for AQA GCSE Physics. Lesson include: Pressure and Surfaces Pressure and Liquids Atmospheric Pressure Upthrust and Flotation Please read individual resources descriptions for each item in the bundle for further detail.
GCSE 9-1 AQA Physics 4.6 -Seismic Waves & Earthquakes
NteachNteach

GCSE 9-1 AQA Physics 4.6 -Seismic Waves & Earthquakes

(2)
New GCSE AQA Physics lesson on ’ Seismic Waves’ written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: State what seismic waves are Identify and state different layers of the earths structure Explain how seismic waves are produced Explain what primary and secondary seismic waves are Detail how seismic waves can provide information about the Earth’s structure
GCSE Physics P1 - Heat transfer Convection
NteachNteach

GCSE Physics P1 - Heat transfer Convection

(1)
Complete lesson on Convection including key content from AQA GCSE Physics. Simple starter to get pupils thinking about convection and also true and false to challenge misconceptions (such as heat rises). Includes experiment requiring potassium permanganate in a beaker and convection loop (if doing teacher demo) but could use food dye as a substitute. Plenary uses plenty of application questions and relation to the vacuum flask. More P1 lessons in same format. https://www.tes.com/member/Nteach
GCSE Physics P2 - Electrical Power (E=Pt & P=IV)
NteachNteach

GCSE Physics P2 - Electrical Power (E=Pt & P=IV)

(1)
A completely resourced lesson on GCSE Physics P2 - Electrical Power (E=Pt & P=IV) including key content from AQA exam specification. Starter focuses on units and what they measure as a nice recap of all P2 units of measure. Power and a key definition is provided is reviewed through relatable examples and then put into the context of electrical devices. Examples of calculating power from energy used and time are provided with a worksheet for this. Activity included for power rating circus is optional as alternatively another worksheet is provided allowing the exercise to be completed without a power rating circus. Energy is then related to current and potential difference with the key equations and exercised with a worksheet. Finally questions to identify appropriate fuse ratings for electrical devices. More P2 lessons to come.
GCSE 9-1 AQA Physics 4.4 NEW SPEC - Nuclear Physics Unit
NteachNteach

GCSE 9-1 AQA Physics 4.4 NEW SPEC - Nuclear Physics Unit

8 Resources
A bundle of resources aimed at the new GCSE AQA specification Nuclear Physics Unit. Lessons included: - Introduction to Atoms & Nuclear Radiation -Atomic Model, Plum pudding and Bohr’s model of the atom. -Atoms and Radiation. - Alpha, Beta and Gamma radiation. - Radioactivity and Half-life. - Nuclear Radiation Uses (Medicine). - Nuclear Fission. - Nuclear Fusion. Additional lesson to be added on ‘the discovery of nuclear radiation.’
GCSE AQA Physics - P3.1 - Energy Demands & Resources (Fossil fuels, Nuclear Power & Biofuels)
NteachNteach

GCSE AQA Physics - P3.1 - Energy Demands & Resources (Fossil fuels, Nuclear Power & Biofuels)

(1)
New GCSE AQA Physics lesson on 'Energy Demands & Resources (Fossil fuels, Nuclear Power & Biofuels)' written in line with new AQA Physics specification. Starter uses a series of riddles for pupils to identify different energy resources to do with the lesson. The importance of fire is discussed for humans (this could also be linked with chemistry content on combustion, showing science links). Energy demands of the world are discussed and summarised to highlight what we need energy for and where it comes from in what proportions. An Activity sheet included to identify key part of a fossil fuelled power station (although not necessarily required by AQA anymore). Fossil fuels are covered in details and discussed the future issues with its usage, leading to Nuclear. Following description of Nuclear (with advantages and disadvantages) with an examiner tip in the note box - fossil fuels and nuclear power are contrasted. Bio-fuels are reviewed as an alternative resources of energy and discussed a renewable and carbon neutral source. Lesson concludes with a set of review questions on the topic which could also be used as a homework task. Extra riddle question at the end. Lesson Objectives: 1) Identify different ways of meeting our energy demands. 2) Explain how each major component of a fossil fuelled power station works.. 3) Explain in further detail different methods meeting energy demands. 4) Discuss and compare the use fossil fuels, nuclear power and bio-fuels.
GCSE Physics P2 - Distance-time graphs (d-t graphs)
NteachNteach

GCSE Physics P2 - Distance-time graphs (d-t graphs)

(0)
Completely resourced lesson on distance-time graphs with key content from AQA and Edexcel Physics. Lesson begins with a review of the use of graphs to present data and relationships, highlighting key graph vocabulary and trends. Speed, distance and time is briefly recapped with the equation and some simple questions. An exercise in plotting distance-time graphs from a short description allows pupils to understand what different trends mean on a d-t graph by plotting them, themselves. Following this it is explained in detail how a d-t graph gradient calculates speed by relating this clearly to the equation for speed. A class experiment is detailed if you wish to allow your pupils to carry this out but if not another activity following summarises the same concepts through a pre-prepared worksheet. A homework task is included that will require some modelling from the teacher.
GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces
NteachNteach

GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces

(2)
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point. Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box. Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed. To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing. The lesson is concluded with a set of review question. Lesson Objectives: - State what pressure is and be able to calculate it. - Identify the units for pressure. - Explain the relationship between pressure, force and area. - Apply knowledge of pressure to different problems.
GCSE Physics P2 - Acceleration and Velocity - time graphs (v-t graphs)
NteachNteach

GCSE Physics P2 - Acceleration and Velocity - time graphs (v-t graphs)

(1)
Completely resourced lesson on velocity-time graphs with key content from AQA and Edexcel Physics. Lesson begins with a starter to get pupils thinking about acceleration whilst recapping terminal velocity. A prompt questions focuses on cars 0-60 mph time so pupils to discuss what acceleration is and what affects it. The acceleration equation is covered in detail clearly highlighting the units used - followed by questions to use the equation. Speed and velocity are contrasted whilst explaining what is meant by vectors and magnitude. The main task uses a movie car chase sequence for pupils to record the time between key incidents which are associated with a set velocity allowing a v-t graph to be produced, this allow for a discussion of v-t graph trends related to data. Key v-t trends are highlighted following this. Acceleration is related to the gradient of a v-t graph very clearly as done in the d-t graph lesson. This allows for a more detailed analysis of the car chase v-t graph (worksheet included). Plenary relates v-t graphs to d-t graphs and uses a v-t graph of a skydive for further questioning (also reviews terminal velocity).
GCSE AQA Physics - P4.5 - Series Circuits
NteachNteach

GCSE AQA Physics - P4.5 - Series Circuits

(1)
GCSE AQA Physics lesson on Series Circuits using key content from AQA exam specification. The starter for the lesson revisits models as a way of helping to explain principles of electric circuits. The model used is a simple model which you can do as a class activity or a class demo by simply using string with dots spotted around the string. This helps to summarise key terms before moving onto series circuit rules. The string model is then used to help pupils explain key series circuit rules which are summarised. The main uses a circuit experiment requiring the pupils to build 6 different simple circuits using ammeters and voltmeters, results can be drawn with circuit diagrams. (Support sheet included for pupils that may struggle drawing circuits). Plenary uses a series of questions to apply pupil knowledge of series circuit rules. Lesson Objectives: 1) Review key words for the electricity topic. (D) 2) Explain the current and potential difference rule for series circuits. (C) 3) Investigate current and potential difference in series circuits. (B) 4) Apply the series circuit rule to problems. (A) Note: This lesson is formatted is similar content to previously listed 'Series Circuits' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
GCSE AQA Physics - P1.2 - Conservation of Energy
NteachNteach

GCSE AQA Physics - P1.2 - Conservation of Energy

(2)
New GCSE AQA Physics lesson on 'Conservation of energy' written in line with new AQA Physics specification. Lessons starts with a 'energy store' description in regards to a pendulum (using interesting animations) which consolidates the previous lessons on energy stores. The swinging pendulum back towards the face is used as the vehicle to discuss conservation of energy, posing the question 'will you be hit in the face when the pendulum swings back?'. Students are led to an experiment to investigate a pendulum swing using basic lab equipment (clamp, string and mass for end of pendulum, can use a bobbin or plasticine) to make observations. This allows for an informed discussion and conclusion to be made to the original question. Energy in closed systems are explained with the reason for them to be used in science, open systems are also looked at in order to allow contrast. The conservation of energy is summarised through discussion of systems which lead to comparing and contrasting a bouncy ball and also bungee jumps in relation to changes in energy stores and conservation of energy. Lesson Objectives: 1) Use ideas about changes in energy stores to explain a pendulum swinging. 2) State what the ‘conservation of energy’ is and explain why conservation of energy is important. 3) Explain what is meant by a ‘closed system’ and how they are used in science. 4) Compare and contrast changes to energy stores between closed and open systems
GCSE AQA Physics - P5.1 - Alternating Current & Direct Current + National Grid
NteachNteach

GCSE AQA Physics - P5.1 - Alternating Current & Direct Current + National Grid

(5)
New GCSE AQA Physics lesson on 'Alternating Current & Direct Current' written in line with new AQA Physics specification. Simple starter using images for pupils to work out what the lesson is about today. Pupils must then group a bunch of electrical devices, either DC or AC supply or both. The direction of flow of current is reviewed (although not entirely necessary but highlights some key physics). This leads to descriptions of DC and AC current flow. A class demo modelling a circuit using pupils as electric charge allows for a visual demonstration of AC and DC current. This can also allow for a teaching opportunity for frequency of AC current. Key wave properties are reviewed to help with analysis of AC waveform representations. Mains electricity at 230V and 50Hz is highlighted, being important to the specification. Peak potential difference is also discussed. The lesson concludes with a collection of review questions and also a question to review AC and DC current looking at slo-mo capture of lights. Lesson Objectives: 1) Identify AC and DC devices. 2) State and explain what is meant by direct current, DC. 3) State and explain what is meant by alternating current and relate to mains supply. 4) Determine period and frequency of an AC supply using diagrams. Also includes lesson on National Grid.
GCSE AQA Physics - P10.2 - Terminal Velocity
NteachNteach

GCSE AQA Physics - P10.2 - Terminal Velocity

(3)
New GCSE AQA Physics lesson on 'Terminal Velocity' written in line with new AQA Physics specification. Lesson Objectives: 1) Explain what air resistance is and how it increases. 2) Explain how unbalanced forces cause changes in an objects motion. 3) Detail why an object will reach a maximum velocity. 4) Use a v-t graph to analyse the motion of a Skydiver. More content to be added to lesson shortly and new worksheets.
GCSE AQA Physics - 10.1 - Force and acceleration F=ma (Newtons Second law)
NteachNteach

GCSE AQA Physics - 10.1 - Force and acceleration F=ma (Newtons Second law)

(4)
New GCSE AQA Physics lesson on 'Newtons Second Law - Force and Accerlation' written in line with new AQA Physics specification. Starter prompts pupils to discuss how there weight would vary on different planets, this is to set-up how weight is different to mass. Key terms Force, mass and acceleration are reviewed for clarity leading to the equation F=ma, the units, how it can be rearranged and then review questions to practice the use of. The equation is then reviewed in terms of proportionality as required by the AQA specification. Following this F=ma is related to W=mg to highlight that weight is a force and different to mass. This then leads to pupils calculating their mass on different planets - alternatively a task is provided to calculate the mass of a schoolbag on different planets. For higher tier pupils intertial mass is explained. Learning Objectives: - Clearly explain what force, mass and acceleration are. - Relate how mass and acceleration effect the size of a force. - Calculate the resultant force on an object by its mass and acceleration. - Explain the difference between weight and mass. - What is meant by inertia (Higher Tier)
GCSE 9-1 AQA Physics 4.6 -  Sound
NteachNteach

GCSE 9-1 AQA Physics 4.6 - Sound

(0)
New GCSE AQA Physics lesson on ’ Sound’ written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: Explain what sound is in terms of a wave. Explain what an echo is and how it occurs. Detail what effect amplitude has on sound. Detail what effect pitch has on sound. Explain how the human ear detects sound and the limits of the human ear.
GCSE AQA Physics - P7.7 - Nuclear Fission
NteachNteach

GCSE AQA Physics - P7.7 - Nuclear Fission

(0)
New GCSE AQA Physics lesson on 'Nuclear Fission ’ written in line with new AQA Physics specification. Learning Objectives for Fission lesson: State and explain what is meant by Nuclear Fission. State the isotopes commonly used in Nuclear Power stations. Explain the process of a nuclear fission chain reaction. Identify and explain in detail the key features of a Nuclear Power station.
CHRISTMAS QUIZ 2019 - FREE
NteachNteach

CHRISTMAS QUIZ 2019 - FREE

(1)
A fun christmas quiz to end term on. Different rounds on general knowledge, tv & film, music, who is the celebrity santa, christmas riddles and pixelated objects.
Design an Experiment worksheet
NteachNteach

Design an Experiment worksheet

(3)
A worksheet to help pupils design/plan their own experiment/investigation. Some pupils still struggle with the intention of science experiments and each aspect required to carry out a successful experiment. The worksheet which is the same format as the experiment planning sheet poses each aspect as a question for pupils to really think what each aspect is about. This can be used as sheet to complete with a guided experiment allowing pupils to understand what each part of planned experiment is about or it can be used as a guide to help a pupil design an experiment (with some guidance of course)