Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

155Uploads

345k+Views

306k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P1 - Thermal Conduction
NteachNteach

GCSE Physics P1 - Thermal Conduction

(0)
Complete lesson on GCSE P1 thermal conduction. Starter includes simple teacher demo which can be substituted for linked video. Main class practical requires standard lab equipment. Key summaries provided with guidance on exam mark worthy responses. Tasks include writing challenge (exam preparation), further questions and plenary relating to vacuum flask. Lessons in same format available for P1. https://www.tes.com/member/Nteach
GCSE Physics P1 - Heat transfer by design
NteachNteach

GCSE Physics P1 - Heat transfer by design

(0)
Complete lesson on heat transfer by design with key content from AQA Physics. Starter includes a simple teacher demo and competition if you wish to make it that way. Main includes simple challenge for pupils using simple equipment and key information and tasks on heat transfer applications. Plenary uses 6 mark exam question. Home structure included for pupils that would prefer to not draw their own for home insulation task. More lessons to follow in same format for P1. https://www.tes.com/member/Nteach
GCSE AQA Physics - P2.2-3 - Infrared Radiation & Black body radiation (2 lessons)
NteachNteach

GCSE AQA Physics - P2.2-3 - Infrared Radiation & Black body radiation (2 lessons)

(6)
2 New GCSE AQA Physics lesson on 'Infrared Radiation & Black body radiation' written in line with new AQA Physics specification. Bundled together is 2 complete lessons on infra-red radiation with different learning objectives and activities. LESSON 1 - Infrared radiation and black body radiation Lesson starts with optical illusion which makes white dots appear black, this is to start thoughts on what black is and engage students with something a bit different. The difference between heat and temperature is discussed to lead to what infrared radiation is. A question posed about whether ice gives off infrared radiation consolidates a key point. Thermal imaging is explored with how it works and a guess what it is exercise of infrared images. Different shades of black are shown to discuss what black does in terms of visible light, leading to an explanation of perfect black body radiation. Black body radiation and infrared emission at varied temperatures is discussed (including a link to a useful simulation). The effect of absorption and emission of infrared on bodies is detailed concluding with summary question on the topic. Lesson Objectives: State the difference between heat and infra-red radiation. Explain what is meant by ‘black-body radiation’. Identify the effects of infra-red radiation can have on a body. Relate the effects of absorption and emission of infra-red radiation has on a body. LESSON 2 - Infrared radiation, surfaces and bodies The use of black balls on the LA reservoir is shown in gif images to pupils to discuss why they did this. Absorption and emission of infrared is reviewed briefly. This leads to factors which effect the Earth's temperature and how greenhouse gases impact this. An experiment to investigate different surfaces and infrared emission, absorption and reflection is outlined. The key points from this investigation are summarised for note taking. A true or false activity reviews previous content followed by review questions. Infrared emission, absorption and reflection is applied through questioning to the Earth & the moon, satellites in space and the starter on the LA reservoir. Lesson Objectives: Identify and explain key factors that effect the temperature of the Earth. Investigate and identify the properties of different materials and their effect on infra-red radiation. Apply your knowledge of infrared radiation and surfaces to real life problems. Explain why the temperature on the Moon is different to the Earth.
GCSE AQA Physics - P13.1 - Electromagnetic Spectrum
NteachNteach

GCSE AQA Physics - P13.1 - Electromagnetic Spectrum

(2)
New GCSE AQA Physics lesson on 'Electromagnetic Spectrum' written in line with new AQA Physics specification. Lesson Objectives: 1) Identify the different parts of the electromagnetic spectrum. 2) Identify the order of EM waves based on wavelengths, frequency & energy. 3) Identify orders of magnitude (size) of different EM wavelengths. 4) Explain the use of different EM waves. 5) Evaluate and discuss the potential risk of using mobile phones.
GCSE AQA Physics- P10.3 - Forces and Braking
NteachNteach

GCSE AQA Physics- P10.3 - Forces and Braking

(2)
New GCSE AQA Physics lesson on Forces and Braking written in line with new AQA Physics specification. All questions are provided with answer within the Power Point. Lesson starts by discussing the speed limit for vehicles against the maximum speeds vehicles can achieve. Stopping distances is explored by looking at different size vehicles going at the same velocity and then braking. Stopping distance is also reviewed against different velocities. Thinking distance and braking distance are highlighted and discussed with a class activity exploring the effects of different factors on thinking distance with higher or lower activity. A class activity is also provided to investigate pupils reaction time to relate to thinking distance. A quick review on resultant forces in relation to vehicles is explored through questioning, this leads to the physics of stopping vehicles through braking. This leads to an exploration of the physics of braking in terms of changes to energy stores and then also how to calculate braking force. Summary questions are provided on this topic to finish the lesson. Plenary poses the starting question again in light of new information pupils will now have. Lesson Objectives: - Evaluate different vehicle speeds for stopping distances - Explain what happens during braking of a vehicle. - Identify and explain what can effect the stopping distance of a vehicle. - Investigate how a drivers reaction time effect stopping distance. - Calculate the braking force of a required for moving vehicles.
GCSE Physics P1 - Heat transfer Convection
NteachNteach

GCSE Physics P1 - Heat transfer Convection

(1)
Complete lesson on Convection including key content from AQA GCSE Physics. Simple starter to get pupils thinking about convection and also true and false to challenge misconceptions (such as heat rises). Includes experiment requiring potassium permanganate in a beaker and convection loop (if doing teacher demo) but could use food dye as a substitute. Plenary uses plenty of application questions and relation to the vacuum flask. More P1 lessons in same format. https://www.tes.com/member/Nteach
GCSE AQA Physics - P2.5 - Heating and insulation (+required practical 2)
NteachNteach

GCSE AQA Physics - P2.5 - Heating and insulation (+required practical 2)

(2)
2 New GCSE AQA Physics lesson on 'Heating and insulation' written in line with new AQA Physics specification. Starter comprises of a series of questions reviewing the content from previous lessons on energy transfer by heating. The definition of insulators are quickly reviewed and this then leads to details of the required practical on insulation. Questioning is provided relating to AT 1 and AT5 before the experiment guidance is given. 3 different experiment approaches are provided: different materials, different number of layers and different starting temperature are given as varied choice of investigation. These link to the factors which affect rate of heat transfer across a material. Data analysis and conclusion guidance is provided. The lesson continue by relating insulation to the home, detailing key methods of insulating the home. A task sheet which can be used for homework is provided which ask pupils to identify how different things either keep or lose heat energy. Lesson Objectives: 1) Review topic of energy transfer by heating. 2) Identify suitable apparatus to complete a scientific investigation. 3) Detail appropriate and safe use of apparatus to complete an investigation. 4) Analyse and interpret collected data to draw conclusions.
GCSE AQA Physics - P5.1 - Alternating Current & Direct Current + National Grid
NteachNteach

GCSE AQA Physics - P5.1 - Alternating Current & Direct Current + National Grid

(5)
New GCSE AQA Physics lesson on 'Alternating Current & Direct Current' written in line with new AQA Physics specification. Simple starter using images for pupils to work out what the lesson is about today. Pupils must then group a bunch of electrical devices, either DC or AC supply or both. The direction of flow of current is reviewed (although not entirely necessary but highlights some key physics). This leads to descriptions of DC and AC current flow. A class demo modelling a circuit using pupils as electric charge allows for a visual demonstration of AC and DC current. This can also allow for a teaching opportunity for frequency of AC current. Key wave properties are reviewed to help with analysis of AC waveform representations. Mains electricity at 230V and 50Hz is highlighted, being important to the specification. Peak potential difference is also discussed. The lesson concludes with a collection of review questions and also a question to review AC and DC current looking at slo-mo capture of lights. Lesson Objectives: 1) Identify AC and DC devices. 2) State and explain what is meant by direct current, DC. 3) State and explain what is meant by alternating current and relate to mains supply. 4) Determine period and frequency of an AC supply using diagrams. Also includes lesson on National Grid.
GCSE 9-1 AQA Physics 4.2  - Electricity Unit - All resources/lessons
NteachNteach

GCSE 9-1 AQA Physics 4.2 - Electricity Unit - All resources/lessons

10 Resources
Resources for new GCSE AQA Physics 2016 specification. Bundled lessons cover the Electricity resources content of the GCSE. This includes: - Electric Charges and fields - Current and charge - Potential Different and Resistance - Component Characteristics - Series Circuits - Parallel Circuits - AC/DC - National Grid - Cables and plugs - Electrical Power and potential difference - Electrical currents and energy transfer (charge) For clear detail on aspects of each lesson please review each lesson bundled into the packaged to ensure it meets your requirements. I hope this gives you and your pupils a great start to the new Physics GCSE. I do update each lesson in the bundle with new and varied content as I often revisit lessons to further improve them.
GCSE 9-1 AQA Physics 4.5 - Forces and motion
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces and motion

6 Resources
5 Lessons on GCSE AQA Physics 'Forces and Motion. Lessons include: - Forces and acceleration. - Terminal velocity. - Forces and Braking. - Momentum. - Impact Forces. - Forces and Elasticity. Please see individual item listing for details on each individual lesson. ALL lessons have answer keys in the PowerPoint
GCSE 9-1 AQA Physics  4.5 - Forces in Balance Bundle
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces in Balance Bundle

5 Resources
5 Lessons on GCSE AQA Physics 'Forces in Balance. Lessons include: - Vectors and Scalars. - Resultant Forces. - Centre of Mass. - Moment, Gear and Equilibrium. - Resolution of forces (Parallelogram/Geometric method. Please see individual item listing for details on each individual lesson. ALL lessons have answer keys in the PowerPoint
GCSE 9-1 - AQA Physics 4.7 - The Motor Effect
NteachNteach

GCSE 9-1 - AQA Physics 4.7 - The Motor Effect

(3)
New GCSE AQA Physics lesson on the motor effect written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: Explain the ‘motor effect’; Recall and use Flemings left-hand rule State what is meant by magnetic flux density Calculate the force on a current carrying wire Detail how a simple electric motor works
GCSE AQA Physics 4.7 - AC DC Generator
NteachNteach

GCSE AQA Physics 4.7 - AC DC Generator

(2)
New GCSE AQA Physics lesson on the AC DC generators written in line with new AQA Physics specification. All questions provided with answers within power point. Explain how the generator effect is used in an alternator to generate ac Explain how a ‘dynamo’ generates dc current Interpret graphs of potential difference generated in the coil against time. Explain how a moving-coil microphone works.
GCSE AQA Physics - P5.3 - Electrical Power and potential difference
NteachNteach

GCSE AQA Physics - P5.3 - Electrical Power and potential difference

(4)
New GCSE AQA Physics lesson on 'Electrical Power and potential difference' written in line with new AQA Physics specification. Starter looks at the power of different devices of very different orders of magnitude. Following this a quick activity looks at powers and conversion using Watts as the unit to convert - reviews nW, µW, mW, W, kW, MW, GW. The power and energy transferred equation is reviewed briefly through review questions. The equation for power using voltage and current is introduced and how to re-arrange it. Fuse ratings are discussed with appropriate choice of fuse rating highlighted. Energy transfer by heating in conductors/resistors is reviewed and then related to the Power equation using resistance and current. How to re-arrange this is shown in detail. The lesson concludes with a series of review questions and exam style questions. Lesson Objectives: 1) State a definition for power. 2) Calculate the power of an appliance by the energy transferred. 3) Relate potential difference and current to electrical power. 4) Identify appropriate fuse ratings for appliances. 5) Identify the uses of resistance in conductors and calculate power using resistance.
GCSE AQA Physics - P9.2-3 - Velocity - time graphs
NteachNteach

GCSE AQA Physics - P9.2-3 - Velocity - time graphs

(2)
New GCSE AQA Physics lesson on ‘Velocity - time graphs’ written in line with new AQA Physics specification. Starter prompts pupils to discuss what would win a race, a sports car on the road or a car falling from the sky in a mile race. Pupils are then asked to put cars in order acceleration in terms of 0-60 mph. The difference between speed and velocity is highlighted. A class activity uses a video car chase for pupils to time the duration of different events which is then used to create a velocity time graph. This allows for the v-t graph to be discussed in terms of what the trends show. Key v-t graph trends are highlighted and reviewed with how gradients of v-t graphs can give acceleration. Pupils are then tasked to answer questions in relation to the v-t graph from the car chase video. A quick task requires pupils to match v-t graph trends with d-t graph trends. The plenary takes a look at a v-t graph for a sky diver to start discussing this area. Lesson Objectives: Plot a v-t graph. Identify key v-t graph trends. Use the gradient of a v-t graph to calculate the acceleration of an object. Analyse motion of a body using a v-t graph.
GCSE AQA Physics - P13.2 - EM Spectrum details
NteachNteach

GCSE AQA Physics - P13.2 - EM Spectrum details

(1)
New GCSE AQA Physics lesson on 'EM spectrum details' written in line with new AQA Physics specification. Lesson Objectives: 1) Recall the different parts of the electromagnetic spectrum in order of wavelength, frequency and energy. 2) Explain in detail with different uses up to 4 EM waves. 3)Explain in detail with different uses of all 4 EM waves. 4) Evaluate and discuss the potential risk of using mobile phones.
GCSE 9-1 AQA Physics 4.1 - Energy and Energy Resources Unit (All lessons)
NteachNteach

GCSE 9-1 AQA Physics 4.1 - Energy and Energy Resources Unit (All lessons)

13 Resources
Resources for new GCSE AQA Physics 2016 specification. Bundled lessons cover the Energy and energy resources content of the GCSE. This includes: - Changes in energy stores. - Conservation of energy. - Energy and work. - Gravitational potential, kinetic and elastic potential energy. - Energy and efficiency. - Electrical appliances, Energy and Power. - Energy transfer by conduction. - Infrared radiation. - Infrared radiation, surfaces and the Earth. - Heating and insulation. - Energy demands, Fossil fuels, Nuclear Power and Biofuels. - Renewable Energy Resources. For clear detail on aspects of each lesson please review each lesson bundled into the packaged to ensure it meets your requirements. I hope this gives you and your pupils a great start to the new Physics GCSE. I do update each lesson in the bundle with new and varied content as I often revisit lessons to further improve them.
GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids
NteachNteach

GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids

(0)
New GCSE AQA Physics lesson on ’ Pressure in Liquids’ written in line with new AQA Physics specification. All questions provided with answers within power point. The lesson starts with a question on the dangers presented to deep sea divers. How liquids exert a pressure is demonstrated with a visual of a series of containers with different heights of liquid inside whilst highlighting the liquid has mass and therefore weight - this is then linked back to pressure = force/area. The importance of height in relation to pressure is further reviewed with a water bottle that has holes at different heights - the water jets shooting out is then discussed. Finally reviewing the importance of density to mass to weight and therefore pressure leads to the formation of the equation, P= ρgh - practice of the use of the equation is provided by looking at the pressure beneath the sea at different depths. The dangers of deep sea scuba diving are again discussed with the lesson knowledge gained. The lesson is concluded with a set of review question. Lesson Objectives: - Explain how a liquid exerts a pressure. - Explain how pressure exerted by a liquid can be increased. - Explain how pressure varies at different points in liquid. - Calculate the pressure in a liquid column.
GCSE 9-1 AQA Physics 4.6 - Light and Lenses (whole unit resourced)
NteachNteach

GCSE 9-1 AQA Physics 4.6 - Light and Lenses (whole unit resourced)

5 Resources
NOTE: The lenses lesson (listed as lesson 4) had been missing from this bundle, this had now been rectified. 5 lessons covering the unit of Light and Lenses for AQA GCSE Physics. Lesson include: Reflection of Light ( Refraction of Light Light and Colour Lenses Using Lenses Please read individual resources descriptions for each item in the bundle for further detail.
GCSE 9-1 AQA Physics 4.7 - Generator Effect
NteachNteach

GCSE 9-1 AQA Physics 4.7 - Generator Effect

(3)
New GCSE AQA Physics lesson on the generator effect written in line with new AQA Physics specification. All questions provided with answers within power point. Explain what the generator effect is Explain how potential difference can be induced in a wire Identify what affects the size of induced potential difference in a generator Detail how to deduce the direction of induced current