I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This bundle of resources contains 15 lessons which meet all learning outcomes within the ‘Ecology’ unit for the NEW AQA Biology Specification.
Classification
New systems of classification
Communities
Distribution of organisms
Competition
Adaptations
Feeding relationships
Recycling materials (water cycle)
Carbon cycle
The human population explosion
Air pollution
Water pollution
Deforestation & peat destruction
Global warming & the impact of change
Maintaining biodiversity
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Atmosphere’ unit for the NEW AQA Chemistry Specification.
Lessons include:
The History & Evolution of Our Atmosphere
The Greenhouse Effect
Global Climate Change
Atmospheric Pollutants
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a ‘Think, Pair, Share’ task to get students thinking about what the rate of a reaction tells us about that chemical reaction. After a short partner and class discussion, the answer can be revealed to the class via the PowerPoint slide. This is followed by a task whereby students need to place a mixture of chemical reactions in order of their speed, getting students to think about which of these reactions might have the fastest rate of reaction.
Students are then introduced to the two ways in which scientists can measure the rate of reaction - how much product formed/how much reactant is used up over a given time. Students will be asked to read some information about this topic and then answer questions on it, this work can be self-assessed using the answers provided in the PowerPoint.
Students will then watch a video on how to calculate the rate of a reaction using a graph, students can self-assess their answers using those provided in the PowerPoint presentation. Students will then practice these skills by plotting a graph using a set of data, which they will then need to use to answer a set of questions, this can be self-assessed using the mark scheme provided.
The next video outlines how students can use a graph to a work out the rate of a reaction at a fixed point, students will answer questions whilst watching the video and then self-assess their work using the answers provided. Lastly, students will again practice this skill by plotting a graph using data provided and then will need to use the graph to work out the rate of reaction at different fixed points. This work can be self-assessed using the answers provided.
The plenary task is is for pupils to complete one of a choice of sentences starters, which would summarize what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lessons starts with looking at the way in which we use models to represent the structure of different compounds, models include the 3D ball and stick model, 2D ball and stick model, dot and cross diagrams and displayed formula showing bonds. Pupils are reminded of the limitations of some of these models, this is something they should be able to recount.
Pupils are now shown a diagram to show how intermolecular forces act between simple covalent molecules, pupils should be able to explain the difference between the strong covalent bonds between atoms but the weak intermolecular forces between molecules and how this relates to the the low melting and boiling points of simple covalent molecules.
The next part of the lesson is going to focus on giant covalent structures, firstly pupils will watch a video and answer a set of questions. Their work can be self-assess using the answers provided on the PowerPoint presentation. Students are then introduced to the three main covalent structures - diamond, graphite and silicon dioxide. Students will be given a set of information on these structures which they will need to use to complete their worksheet on giant covalent structures. To assess their knowledge of this topic there is a set of ‘quick check’ questions, pupils of a higher ability may want to complete these questions in the back of their books without discussing with others. The work can be assessed using the mark scheme provided.
The last part of the lesson focuses on fullerenes and graphene - two other giant covalent structures with unique properties. Students are firstly introduced to the structure and uses of these compounds before watching a video and answering questions about them. The work from this task can be self or peer assessed using the answers provided.
The plenary task is for pupils to pretend they are a scientist researching the use of nanotubes, fullerenes and grapehene, they need to come up two ideas of how these materials can be used in future technologies.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Inheritance, Variation & Evolution’ unit for the NEW AQA Biology Specification.
Lessons include:
Types of reproduction
Variation
Meiosis
Selective Breeding
Genetic Engineering
Inherited Disorders
Gene Expression & Inheritance
DNA & Protein Synthesis
Ethics of gene technologies
Evolution by natural selection
Evidence of evolution
Evolution of antibiotic resistant bacteria
Evolution & Extinction
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Infection & Response' SoW for the higher tier.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of this lesson is a recap on the plant diseases students should have already covered within the 'infection & response' unit - rose black stop and tobacco mosaic virus. Plants will then be asked to come up with a brainstorm of the symptoms plants may exhibit when they are diseased. Once pupils have discussed this and tried to come up with some ideas you can reveal some of the common symptoms on the PowerPoint slide, along with images and examples.
The next slide looks at the ways in which plant diseases can be diagnosed, from gardening manuals to monoclonal antibody testing kits.
The next activity focuses on the role of certain minerals in the growth and development of plants, firstly students will draw a table in their book and then they will given a slip of information about one of the mineral ions - nitrates, magnesium or potassium. Pupils will need to walk around the room or swap these slips of paper with people on the same table as them to complete the table, they can then assess their work.
The final part of the lesson focuses on plant defence responses, firstly pupils will be shown some diagrams of plants and their defence methods and will be asked to think > pair > share the potential ways plants can defend against disease.
Pupils will then be given a card sort with different plant defence mechanisms, students need to sort these into three different categories - physical barrier, chemical barrier, defence against herbivore. Once completed pupils can then assess their work using the answers provided.
The final task is an exam-style question on what they have learnt that lesson, pupils of higher ability may want to complete these questions in silence at the backs of their book. Pupils can then self or peer-assess their work.
Plenary activity is to write 3 key words, 2 facts and 1 question about what pupils have learnt that lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW.
Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers.
Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain.
Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work.
The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember.
The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided.
The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Infection & Response’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson firstly begins by looking at what monoclonal antibodies are and how they are produced, using a flow diagram the first slide goes through these details. The next slide is the images from the flow diagram but no description of what is happening, pupils need to match the statements to the correct part of the process. This can then be assessed.
The next part of the lesson focuses on the uses of monoclonal antibodies, firstly pupils are given a set of questions about pregnancy tests which they will need to answer using a video. This can then be assessed using the answers provided.
Pupils are then given a table/asked to draw a table in their book for the different uses of monoclonal antibodies. Pupils will then need to use posters which can be positioned around the room or on desks to fill this table in.
The final activity is a card sort - pupils are given statements about the uses of monoclonal antibodies which are either advantages or disadvantages, pupils will need to write these statements into the correct column in their books. Once finished they can self-assess their work using the answers provided.
The plenary activity is for pupils to choose two questions to answer from a list about the topic of the lesson.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to reversible reactions, including the example of thermal decomposition of ammonium chloride.
Pupils will then conduct an investigation into the energy changes which occur during a reversible reaction, using the practical sheet provided students will carry out the experiment and record their results in the table provided. The reversible reaction from this investigation is then shown on the board, with an explanation of the energy changes that are taking place as the reaction moves in either the forward or reverse direction.
Pupils will now watch a video on energy changes which take place during a reversible reaction, using this they will need to answer a set of questions. This work can be self-assessed using the answers provided on the PowerPoint presentation.
Pupils will now need to complete a ‘Quick Check’ task which includes questions within the module of ‘Rates of Reaction’, students can then self-assess or peer-assess their work using the mark scheme provided.
Finally, pupils can complete a crossword which summarizes definitions used within the ‘Rates of Reaction’ module, the answers for this are provided for self/peer assessment.
The plenary task required pupils to complete an exit card listing 3 things they have learnt today, 5 key words and 1 question to test their peers knowledge of a subject.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical Analysis’ unit for the NEW AQA Chemistry Specification.
Lessons include:
Pure substances & mixtures
Analysing chromatograms
Testing for gases
Testing for positive and negative ions
Investigative analysis
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to evolutionary trees, pupils will be shown how to interpret evolutionary trees and understand the common ancestry between species of organisms. Pupils will then be shown the difference between convergent and divergent evolution.
The next part of the lesson will focus on the work of Woese et al, pupils will watch a video and try to answer questions about Woese and his work, this can be assessed using the answers which can be revealed once the video has been watched. Pupils can then watch a second video, using this video they will then try to complete profile cards for three domains as proposed by Woese – archaea, bacteria and eukaryotes. Pupils can again check their work against the answers provided in the PowerPoint slide.
Pupils will then be given some information on Woese and his work, students will need to use this information along with what they have learnt so far in the lesson to complete a newspaper article on his work and infamous discovery.
The next part of the lesson looks again at evolutionary trees, pupils are shown how to use an evolutionary tree to compare the relationships between organisms. Pupils will then need to complete an exam-style question on evolutionary trees, which can be self-assessed using the mark scheme provided.
The plenary task is for pupils to come up with questions for a set of answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier students.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an outline on the role of the kidney, pupils are asked recap questions on how water enters and leaves the body, which can be self-assessed using the answers provided.
The next slide outlines the main functions of the kidney in controlling water and mineral ion balance, pupils will then need to answer questions on this information. This work can be self-assessed using the answers provided on the following slide.
Pupils will then watch a video on how the kidneys work, pupils will need to answer questions whilst watching the video. Once the video is finished they can assess their own work using the answers provided. To summarise what the students have learnt so far they will then copy and complete sentences, filling in the blanks with the key words provided. Again, the answers for this task are provided for pupils to assess their work.
The next part of the lesson focuses specifically on the release of ADH from the pituitary gland and it's control over the water balance in the body. Pupils are shown a flow diagram of the responses when water levels either rise too high or fall too low in the body. Pupils will then be given a list of statements and will be asked to recreate their own flow diagram to demonstrate this process. This work can then be assessed using the answers provided.
The plenary task is for pupils to come up with three summary sentences about what they have learnt this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts with a Think > Pair > Share task for pupils to consider the properties of gold, pupils can list them down and then share their ideas with the class. The property of gold being very soft is not always useful, especially when it is being used to make jewelery and so it is often mixed with another metal (e.g. platinum) to make it stronger.
The concept of an ‘alloy’ is then introduced, as well as a definition and an explanation as to why alloys are useful. Some useful properties of alloys are listed - malleable, durable, strong, flexible - pupils need to come up with a a definition for each of these properties. Once this task is complete students can self-assess their work using the mark scheme provided.
The next task for pupils to complete is ‘Who’s right for the job?’ - students will be given information on the properties of different metals, as well as a list of alloys needed for different jobs - used in jewelery/used to make airplane bodies. Students need to select the correct metals to make the alloys required, their work can be self-assessed using the mark scheme provided.
The next part of the lesson focuses on iron alloys specifically, firstly students will watch a video on iron alloys and will need to answer a set of questions - this work can then be self-assessed using the answers provided.
The last task for pupils to complete is a table whereby students need summarise how carbon content affects steel and it’s properties, this work can also be self-assessed using the mark scheme provided.
The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification.
Lessons include:
States of matter
Forming ions
Ionic bonding
Giant ionic lattices
Covalent bonding
Simple and giant covalent structures
Metallic bonding & giant metallic structures
Nanoparticles
The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for the higher tier GCSE chemistry students.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with students learning how to calculate the number of moles of a gas when you know the molar gas volume. Students will then work their way through a set of questions using this calculation, for latter questions students will need to rearrange the equation. This work can then be assessed using the answers provided in the PowerPoint presentation.
The next part of the lesson focuses on calculating the masses of gaseous reactants and products, firstly students are shown a worked example. The next task is for pupils to watch a video, using which they should answer a set of questions. Once this task has been completed students shoudl mark their work using the answers provided.
Using the formula they have learnt whilst watching the video, they should now complete a set of questions on a specific chemical reaction - this required students to calculate the volume of gases produced or the mass of a reactant needed to produce a certain amount of a gas product. This work can be self-assessed using the answers provided in the PowerPoint presentation.
The next task is a further set of problems requiring students to calculate the volume of gaseous reactants or products given a balanced symbol equation for a chemical reaction.
The last task requires pupils to come up with 4 exam questions on the topic of gas volumes, they should also include a mark scheme for each of the questions. Once they have competed their questions they should swap with the person next to them and complete their partners questions, these can be self or peer-assessed using the mark schemes they have written.
The plenary task is for pupils to write a WhatsApp message to their friends to tell them what they have learnt about this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a resource designed to meet specification points for the NEW AQA GCSE Physics module on ‘Energy’.
Other lessons of this series can be found in my TES Shop:
https://www.tes.com/teaching-resources/shop/SWiftScience
It begins with a discussion on what power is a measurements of, there are hints that can be put on the board for lower ability students. You can then provide students with a definition of power which they can write down in their books.
Pupils then consider the units of power, they can copy and complete sentences on the board which compare watts to joules/second and the difference between watts and kilowatts, joules and kilo joules.
Next is the completion of a formula triangle in their books, higher ability students can figure out how to write this on their own but for lower ability students you may want to guide them through it. The concept of power is then put into context using Mo Farah/Usain Bolt as examples (videos provided).
The next task is a table that students will need to copy off the board, it outlines different appliances and pupils will have to perform calculations to fill in the blanks. Pupils can self-assess their work using red pens, answers are provided on the PowerPoint slide.
The final activity is a worksheet pupils can complete on power, again the answers to this worksheet is provided within the PowerPoint slide for pupils to self-assess the work.
Plenary activity requires pupils to state three key facts from the lesson, 2 key words and pose a question to their peers on the topic of power.
All resources are included in the PowerPoint slide. Thanks & enjoy :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an outline of why nitrogen so important to plants and how farming can disrupt the balance of nitrate ions in the soil, hence the need for efficient fertilisers.
Firstly, pupils will watch a video on the Haber process - a way of turning nitrogen in the air into ammonia, the ammonia can then be used to produce fertilisers. Whilst students are watching the video they should be answering a set of questions which will be provided to them, this work can then be self-assessed using the mark scheme provided.
Next, pupils are given a diagram of the Haber process as well as some jumbled up statements describing each step - they will need to arrange the statements in the correct order - assigned to the correct part of the diagram. This work can be self-assessed using the mark scheme provided.
The next part of the lesson focuses on the reaction that takes place and the controlled conditions of the reaction vessel which ensures that the optimum temperature and pressure are maintained for the optimum yield of ammonia - without expending more energy than needed!
The last part of the lesson is a set of exam-style questions, pupils will need to answer these in their books and they can then either peer or self-assess their work using the answers provided.
The plenary task is for pupils to write a list of key words from the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Quantitative Chemistry’ unit for the NEW AQA Chemistry Specification.
Lessons included:
Relative formula mass and moles
Balancing equations and reacting masses
Limiting reactants and percentage yield
Atom economy HT
Concentration and titrations
Titration practical and calculations HT
Volume of gases
The lessons contain a mix of differentiated activities, progress check and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Homeostasis’ unit for the NEW AQA Biology Specification.
Lessons include:
1. Principles of homeostasis
2. The human nervous system
3. Reflex actions
4. The endocrine system
5. The control of blood glucose levels
6. Treating diabetes
7. The role of negative feedback
8. Human reproduction
9. The menstrual cycle
10. Controlling fertility
11. Infertility treatments
12. REQUIRED PRACTICAL: Reaction Time
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Firstly, students are introduced to the term ‘Electrolysis’ including a description of the process, a list of key words associated with the process and a diagram. Students will now watch a video about the process, using which students will need to answer a set of questions. After they have completed this task they will be able to self-assess their work using the mark scheme provided.
Students will now complete a fill-in-the-blank task to summarise what they have learnt so far, this can be assessed using the answers provided.
Pupils are now shown a diagram to demonstrate what is happening at the anode and cathode during the electrolysis of lead bromide, pupils will need to use the list of key words provided to complete captions to describe what is happening at each electrode. Students can check their work against the example answers provided in the PowerPoint.
Next, pupils are shown the ionic half-equations for the reactions occurring at the anode and cathode during the electrolysis of lead bromide. Pupils will then need to identify the products at each electrode, as well as complete the ionic half-equations, for the electrolysis of a set of ionic compounds: lihtium oxide, sodium chloride and magnesium chloride. Once complete, pupils can self-assess their work using the answers provided.
The next part of the lesson focuses on the products formed at each electrode when the ionic compound is within an aqueous solution. Students will be shown what will happen at the anode and at the cathode, using this information they will need to predict the products formed at the anode/cathode during the electroysis of set of solutions. Students can self-assess their using using the answers provided.
The final task focuses on the electrolysis of brine, students will watch a video and will need to answer a set of questions using the information provided in the video. After completing this task, pupils will need to self-assess their work using the answers provided.
The plenary task requires pupils to write a ‘Whatsapp’ message to a friend to explain what they have learnt this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)