I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided.
Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles.
The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided.
Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint.
The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided.
Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work.
The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a think > share > pair task for pupils to consider the definition of genetic engineering, once pupils have had a discussion about this the answer can be revealed.
Pupils will then be shown a video about the steps involved with genetic engineering, pupils will need to answer questions whilst watching the video. Pupils can then check their work against the answers provided and correct anything they perhaps didn't get during the video.
Pupils will then be given a diagram of the genetic engineering process, specifically using the example of the human gene for insulin being inserted into a bacterium. Pupils will need to copy the diagram into their books and choose the correct statements, from a jumbled list, to go with the correct steps. Pupils can self or peer-assess their work once this task is complete.
The next part of the lesson is on the genetic modification of crops, pupils will firstly watch some videos which outlines various viewpoints of the growth and consumption of GM crops. Pupils should watch the videos and note down any benefits or problems they identify, a class discussion can follow this to ensure all students got the important points.
The benefits of GM crops will then be highlighted to students with the aim to be used to feed the world's starving nations. After pupils have read through this they will be asked to come up statements that a collection of people might make about GM crops - an organic farmer, a charity worker for a world hunger organisation, a GCSE student and a GM scientist.
The final activity is for pupils to complete the exam-style question on genetic engineering, once completed pupils can assess their work using the mark scheme provided.
The plenary is for pupils to pick a task - either write a summary sentences including a list of key words or identify the questions for a list of answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution ’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to inherited disorders, particularly the two examples students will need to learn about - polydactyly and cystic fibrosis.
Pupils will then be given information on either of these two disorders and will be asked to complete a fact file on the one they have been given using a set of criteria provided. Once they have completed one of the fact files they will need to pair up with someone who did the other fact file to share information.
Pupils will then be given further information about the inheritance of these disorders and whether it is controlled by a dominant or recessive allele. Pupils will need to draw genetic diagrams for each of the disorders given a set of example parent genotypes, and work out the probability of the offspring inheriting the condition.
The next part of the lesson focuses on embryo screening, firstly pupils are introduced to the two ways in which embryos can be screened for genetic conditions - amniocentesis & chorionic villus sampling. The next task pupils will need to think > pair > share ways in which these two methods which be controversial, identifying the positive and negative effects on the baby and family. For the final activity pupils will be given a set of opinion cards in groups, they will need to read the viewpoints, discuss as a group and write a short summary paragraph on their opinion of genetic screening in embryos.
The plenary task is for pupils to write three summary sentences of what they have learnt this lesson using as many key words from the list provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW.
Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers.
Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain.
Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work.
The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember.
The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided.
The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a recap from the previous lesson showing gametes fusing during fertilisation and the changes in chromosome numbers. The first task is for pupils to watch a video and answer a set of questions whilst they are watching, once the video is complete they can assess their work using the mark scheme provided.
Pupils will then be given a worksheet with a diagram of meiosis occurring and statements where pupils will need to fill in blanks to complete the correct steps in the process. Pupils can assess their work using the answers provided.
Pupils will then be shown the different between diploid and haploid cells and how this can be depicted in a diagram, they will be shown the changes that occur going from two haploid gametes to a diploid zygote.
The next activity is for pupils to sort statements into two columns - mitosis or meiosis. Once this activity has been completed pupils can mark their work using the answers available.
Pupils will now complete a quick check, pupils will answer questions about the topic of meiosis into their books. For higher tier pupils they can be challenged by completing the questions at the back of their books without using their notes. Once completed the work can either be self-assessed or peer-assessed.
The final activity is an exam-style question which higher ability pupils can complete at the back of their books, this can then be assessed usng the mark scheme provided.
The plenary activity is for pupils to pick a plenary between summarising the work from the lesson in three sentences or writing a definition for a set of key words.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Bioenergetics' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction of the process of aerobic respiration including the word equations that pupils will need to learn. Next is a video, pupils will need to answer questions whilst watching the video, once it is finished they can self-assess their work using the mark scheme provided.
Pupils are then introduced to the idea that aerobic respiration is exothermic and look specifically at the ultra-structure of the cell and which parts are important for respiration, this activity is a match up activity that pupils can complete and then mark.
A mid-plenary is a true or false task and the final activity is a levelled worksheet pupils will complete using information cards on how animal and plant organisms use the energy released by respiration. Once finished they can self-assess using the mark scheme on the PowerPoint slides.
Pupils have a choice of two activities to complete for their plenary - either an anagram challenge or a summary sentence using a list of key words.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by introducing the effects that too high or too low blood glucose levels can have on a person. This then follows into a couple of slides which outlines how the body is able to keep the blood glucose levels at a constant, firstly students will learn about the role of insulin and then glucagon in controlling blood glucose. Pupils will then watch a video which summarises what they have just learnt, this can then be used to complete a worksheet which runs through the steps involved with either lowering or increasing blood glucose levels. This work can be self-assessed using the answers provided.
The next task is a summary table of the key words pupils will have learnt about within this topic, they will need to either identify the key word or a definition. This work can be assessed once they have finished using the answers provided. The next activity is a set of questions on the topic of controlling blood glucose, students should write their answers in full sentences and as an extra challenge could answer this in the back of their books and try not to look at their notes from the lesson so far.
The next part of the lesson focuses on diabetes, pupils will firstly watch a video and answer questions about the causes an treatments for diabetes, this can be self-assessed once finished. The second activity is a past-paper question, pupils can answer this in their books and then mark their work using the mark scheme provided.
The plenary task is for pupils to summarise what they have learnt today in three sentences.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Infection & Response' SoW for the higher tier.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of this lesson is a recap on the plant diseases students should have already covered within the 'infection & response' unit - rose black stop and tobacco mosaic virus. Plants will then be asked to come up with a brainstorm of the symptoms plants may exhibit when they are diseased. Once pupils have discussed this and tried to come up with some ideas you can reveal some of the common symptoms on the PowerPoint slide, along with images and examples.
The next slide looks at the ways in which plant diseases can be diagnosed, from gardening manuals to monoclonal antibody testing kits.
The next activity focuses on the role of certain minerals in the growth and development of plants, firstly students will draw a table in their book and then they will given a slip of information about one of the mineral ions - nitrates, magnesium or potassium. Pupils will need to walk around the room or swap these slips of paper with people on the same table as them to complete the table, they can then assess their work.
The final part of the lesson focuses on plant defence responses, firstly pupils will be shown some diagrams of plants and their defence methods and will be asked to think > pair > share the potential ways plants can defend against disease.
Pupils will then be given a card sort with different plant defence mechanisms, students need to sort these into three different categories - physical barrier, chemical barrier, defence against herbivore. Once completed pupils can then assess their work using the answers provided.
The final task is an exam-style question on what they have learnt that lesson, pupils of higher ability may want to complete these questions in silence at the backs of their book. Pupils can then self or peer-assess their work.
Plenary activity is to write 3 key words, 2 facts and 1 question about what pupils have learnt that lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with students completing a think > pair > share on the types of environments in which organisms live around the world. After a short discussion with the class about the sorts of environments they are aware of, you can move the PowerPoint slide on to identify the types of biomes present on Earth.
The next activity is a copy and complete activity on survival and reproduction as a recap, after pupils have completed this task they can self-assess their work using the answers provided.
Next pupils will be introduced to adaptations, pupils will then watch a video on adaptations and answer questions using the information provided. Once they have completed this task they can mark their work using the answers provided.
Pupils will now read information posters around the room (resources provided at the end of the lesson) and will use this to complete adaptation profile cards for animals and plants from arctic and desert conditions.
The next part of the lesson will focus on extremophiles, pupils will read an article on extremophiles and will read through and underline the descriptions of particular extremophile adaptations. Once this work has been self-assessed pupils will move on to an exam-style question on adaptations, once this task has been completed pupils can either self-assess or peer-assess their work.
The plenary task is for pupils to write three quiz questions on the topic of the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organic Chemistry’ unit for the NEW AQA Chemistry Specification.
Lessons include:
Alcohols, carboxylic acids and esters.
Complete & incomplete combustion
Cracking hydrocarbons
Fractional distillation
Hydrocarbons
Natural polymers & DNA
Polymerisation
Reactions of alkenes
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a focus on mutations and how they contribute towards genetic variation within a population. Pupils can tag read some information provided in the board and then answer questions in their books, this work can be self-assessed against the mark scheme provided.
The next activity involves pupils watching a video about natural selection, using the video they will need to answer questions which again can be self-assessed using the success criteria provided.
Pupils will then be shown a slide which demonstrates, with the example of giraffes, how natural selection can ensue within a population of organisms over time. Pupils will then be given a cartoon strip to show how natural selection occurs, they can draw diagrams of any organism they wish to choose and will need to fill in the blanks for the captions below each stage in the process. This work can be self-assessed one complete.
The next task pupils need to complete is a card sort describing the steps involved with how head lice become resistant to head lice shampoos, pupils can discuss in pairs to complete this task. Once complete the answers will be revealed, for higher ability pupils they can draw this as a flow diagram in their books as an extension.
The final activity is a past-paper question, pupils can complete this in their books. For higher ability pupils you could demand silence and ask for it to be completed at the back of their books as a revision activity, for lower ability pupils you may allow discussion with a partner.
The plenary activity involves pupils being provided with the answers to 5 questions, pupils need to think of 5 questions which may link to these answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by introducing the composition of the blood - platelets, white blood cells, red blood cells and plasma.
Pupils will jump straight into the first activity, they will be given a place mat worksheet which has questions about each of the four components of the blood. Each student will then be given a slip of information about these four components, the students will need to share information to complete their place mat. Once complete, the answers which will be provided on the PowerPoint slide can be used for pupils to either self-assess or peer-assess their work.
Pupils will now look at how red blood cells transport of oxygen around the body, once this has been explained using diagrams on the PowerPoint slide pupils will then need to arrange sentences into an order to show how this process occurs. Once completed pupils will self-assess their work using the answers provided.
The next activity is a True or False activity about what the students have learnt so far, this could be extended by asking students to re-writing the incorrect sentences so that they make sense.
The final activity is a past-paper question on the components of blood, which pupils can then peer or self-assess.
The plenary is for pupils to brainstorm key words they have learnt from the topic of the heart and blood so far.
All resources are provided in the PowerPoint.
Any questions please let me know via the comments section, if you have feedback please do leave a comment :) thanks!
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a recap on the calculations that students have learned so far in this topic, students are asked to ‘Think > Pair > Share’ their ideas about the calculation needed to work out the energy transferred to an appliance and the power supplied to an appliance. The answers can then be revealed and students will need to complete a set of questions on a worksheet, this task can be self-assessed using the mark scheme provided.
Next, students will watch a video on ‘efficiency’ and whilst watching they will need to answer a set of questions, this work can then be self-assessed using the answers provided. Next, pupils will need to rearrange the equation for efficiency in order to work out the output power of an appliance and using this they will answer a set of questions. The mark scheme for the first part of the questions are included in the PowerPoint so students can assess their own work.
Pupils will now be given a set of problems to work through, using the efficiency calculations they have just learned, if they finish the questions on the PowerPoint slide there is a separate worksheet of problems that pupils can work their way through. The mark scheme for the first set of questions is included in the PowerPoint for pupils to self-assess their work.
Next, students will be shown how electrical appliances lose waste energy, from this information students will need to summarise using a fill-in-the-blank task. Again, the answers for this task is included in the PowerPoint for students to either peer or self-asses their work.
The plenary task is an anagram challenge, pupils will have to unscramble a 6 words which all relate to the ‘Electricity’ topic.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, specifically for the higher-tier, biology only specification.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to the work of Gregor Mendel, students will firstly watch a video and answer questions using the information provided. Once finished with this introductory task pupils can self-assess their work against the marking criteria.
The next task focuses on genetic diagrams drawn to represent the crosses Gregor Mendel carried out during his investigations. Pupils will be prompted to draw the genetic diagrams themselves to show the genotypes of offspring of the F1 and F2 generation of pea plants in the example given. There is a prompt which you can reveal for those students of a lower ability. Once this task is complete pupils can check their work against the answers which are provided.
Now there is a quick check mid-plenary for pupils to consolidate knowledge of what they have learnt so far, a set of questions is provided and the mark scheme for pupils to check their work against.
The next part of the lesson focuses on why Mendel’s important work was not wholly recognised within his lifetime, pupils can read an extract of information and use this to answer questions. Once complete pupils can self-assess their work using the answers provided.
The final part of the lesson is looking at how Mendel’s work was imperative to the development of the double-helix model of DNA and subsequent genetic research and discoveries. Pupils will need to read a page of information, in pairs, and answer questions provided on the PowerPoint slide. For those pupils of a lower ability it may be easier to tag read the information and answer questions in groups. Once completed pupils can check their work against the success criteria provided.
The final task is for pupils to answer an exam question on this topic, pupils can complete in their books (at the back of their books for an extra challenge) and assess their work using the mark scheme once complete.
The plenary task is for pupils to come up with a questions that they would like to ask Mendel about his work.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Inheritance, Variation & Evolution’ unit for the NEW AQA Biology Specification.
Lessons include:
Types of reproduction
Variation
Meiosis
Selective Breeding
Genetic Engineering
Inherited Disorders
Gene Expression & Inheritance
DNA & Protein Synthesis
Ethics of gene technologies
Evolution by natural selection
Evidence of evolution
Evolution of antibiotic resistant bacteria
Evolution & Extinction
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Homeostasis’ unit for the NEW AQA Biology Specification.
Lessons include:
1. Principles of homeostasis
2. The human nervous system
3. Reflex actions
4. The endocrine system
5. The control of blood glucose levels
6. Treating diabetes
7. The role of negative feedback
8. Human reproduction
9. The menstrual cycle
10. Controlling fertility
11. Infertility treatments
12. REQUIRED PRACTICAL: Reaction Time
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on genes and inheritance with a fill in the blank task, pupils can then mark their work using the mark scheme provided.
The first task is on sexual reproduction , pupils will watch a video and will need to note down any facts about sexual reproduction that they can remember from the video. They can then assess their work given the list provided. Pupils will then be given a list of questions and will watch a second video on asexual reproduction, pupils will then need to answer questions about asexual reproduction using the video. The answers to these questions can be assessed using the mark scheme provided.
The next activity requires pupils to copy down a flow diagram, filling in the blanks, to show how male and female gametes fuse together during fertilisation and develop into an embryo. This task focuses on chromosome numbers during this process. Pupils will now be provided with a set of jumbled statements, pupils will need to sort the statements into correct columns - they are either describing asexual or sexual reproduction. Pupils can mark their work using the answers provided.
The final activity is for pupils to answer an exam-style question on this topic, they can complete this in silence and at the back of their books to challenge them further. This work can then be assessed using the mark scheme.
The plenary activity is for pupils to unscramble the anagrams to reveal 6 key words taken from the lesson.
The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’.
The lesson begins with an introduction to resistance, students are provided with a definition which they can write down in their books, as well as a diagram to depict what happens to electrons as they flow around the metal wires within a circuit. Students will then complete a ‘copy-and-complete’ task, this can be marked using the mark scheme provided.
Students are now asked to ‘Think > Pair > Share’ their ideas about whether the thickness of the wire would affect the resistance of the wire. Students will discuss their ideas with their peers, share their ideas with the class and then watch a video to find out the answer. Students can then summarise their findings in their books by completing a fill-in-the-blank task, this can then be self-assessed once complete.
Students will now be introduced to Ohm’s law, which links the resistance of a component to the current running through it and potential difference across it. Students will be given an equation triangle, they can copy this down into their books and use this to complete the set of problems on the next slide. This work can be marked and corrected once complete.
Lastly, students are asked to ‘Think > Pair > Share’ their ideas about which materials are good conductors and insulators. Students can discuss their ideas and write them down into their books, answers are then revealed for students to check their work against.
The last assessment task is a ‘Copy and correct’ task, students are given a paragraph of information which they will need to copy and correct the mistakes as they go. Once complete, this can be marked using the mark scheme provided.
The plenary task is a choice of two tasks - to summarise what students have learned in three sentences or to write a definition for a set of key words.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy.
The lesson begins with an introduction to the law of the conservation of energy, students are told that energy cannot be created or destroyed but it can be stored and transferred. Next, students are introduced to the five main energy stores, students are asked to match the correct names to the photos displayed. This task can then be self-assessed using the mark scheme provided.
Next, students are introduced to the ways in which energy can be transferred - via light waves, sound waves and electricity. They will be shown an energy transfer diagram, depicting the energy transfers which take place within a torch. Once students have seen the complete diagram, they will then have a go at completing it themselves, using the statements provided. This task can the be marked against the mark scheme provided.
Students will then complete two further energy diagrams to display the energy transfers taking place within a candle and TV. The answers to this task are also included in the PowerPoint presentation so students can self-assess their work using the mark scheme provided.
Lastly, students will complete an investigation into the height a ball bounces back up to after it has been dropped from a height. Students will work in groups of three, following the instructions provided on the PowerPoint to complete the results table provided. Students will then need to answer a set of questions using the data they collected from the investigation. This can be self-assessed using the mark scheme provided.
The plenary task requires students to complete one of the sentence starters, to summarise what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Biological Molecules’ unit.
For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This activity is a revision activity for the ‘Enzyme Action’ lesson, students can either have a card each and the task can be completed as a card loop activity with the whole class.
Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time!
The solution for this activity is included so you can check their answers.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)