NEW AQA GCSE Biology - 'Homeostasis' lessons

NEW AQA GCSE Biology - 'Homeostasis' lessons

This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Homeostasis' unit for the NEW AQA Biology Specification. Lessons include: 1. Principles of homeostasis 2. The human nervous system 3. Reflex actions 4. The endocrine system 5. The control of blood glucose levels 6. Treating diabetes 7. The role of negative feedback 8. Human reproduction 9. The menstrual cycle 10. Controlling fertility 11. Infertility treatments 12. REQUIRED PRACTICAL: Reaction Time The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - The endocrine system

NEW AQA GCSE Trilogy (2016) Biology - The endocrine system

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap on the structures and function of the endocrine system, it then moves on to look at the positions of the different glands involved in the endocrine system. Pupils are shown an image of a human body (also can be given as a worksheet) and should discuss in pairs which glands fall into which position on the diagram. After the answers have been revealed, and are then assessed, pupils will now need to discuss the function of each of the glands. From a list of descriptions, pupils should try and match the name of the gland to the hormone it produces, this work can then be self-assessed. In the next activity pupils are required to draw a table and then in groups/per table they are given a set of cards which they then need to sort into the correct spaces on their table to summarise the main role of the hormones secreted by 5 glands - the pituitary, the thyroid, the pancreas, the ovaries and the testes. This work can then be assessed using the answers provided. Pupils can then complete a 'silent 5' set of questions on the topic they have covered so far, they should try and complete the questions on their own but for lower ability groups they may want to try discuss in pairs before answering. The final activity is an exam paper question on hormone levels, once completed pupils can use the mark scheme to mark their own work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology – Classification

NEW AQA GCSE Trilogy (2016) Biology – Classification

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Ecology' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with pupils being given a card sort of organisms, they will need to look at the pictures and try and decide how they would sort these organisms into groups, in other words how would they classify the organisms. Pupils will then be introduced to Linnaeus’ classification system and how this now influences the way we classify organisms, as well as explaining how modern technology can help us to group organisms. Pupils will then watch a video on classification, they will asked to think about, and write notes, on why classification is such an important process that scientists use. Now pupils are being introduced to the order of the classification system, pupils will be shown the order and then pupils will need to come up with their own mnemonic to help them remember this order. Pupils will then be introduced to the binomial naming system and the importance of this system, which they should be able to recount. The next activity involves pupils walking around the room, reading posters and they will need to use this information to complete a worksheet answering questions about the different kingdoms of the classification system. Once this is complete pupils can self or peer assess their work using the answers provided within the PowerPoint presentation Pupils will then complete an exam-style question on the topic of classification. This can then be self-assessed using the mark scheme provided. The plenary is for pupils to complete an exit card to demonstrate what they have learnt during the lesson, this can be handed in at the end of the lesson to the teacher to check student understanding. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - The role of negative feedback

NEW AQA GCSE Trilogy (2016) Biology - The role of negative feedback

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts by recapping on the role of negative feedback systems in homoeostasis, pupils will need to complete a flow diagram to demonstrate how a negative feedback system works. This can be completed in their books and marked using the answers provided. The next part of the lesson focuses on thyroxine and adrenaline, pupils are reminded of the roles of each of these hormones and they will then be given some extra information (provided) using which they will need to answers some questions on the topic. Detailed answers are provided for these questions so that pupils can check their work by either peer or self-assessment. The next activity is a 'who am I?' task, pupils will have covered a range of hormones by this point and will now be given a set of descriptions about different hormones, they can discuss with their partners and try to identify the names of each of them. Once completed this work can be assessed. The final task is an exam question about hormones, with the mark scheme provided. The plenary task is for pupils to write a text message to a friend describing what they have learnt in the lesson today! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) - The menstrual cycle

NEW AQA GCSE Trilogy (2016) - The menstrual cycle

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished. Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. **For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams**. To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation. The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Biology - 'Inheritance, variation and evolution' lessons

NEW AQA GCSE Biology - 'Inheritance, variation and evolution' lessons

This bundle of resources contains 13 lessons which meet all learning outcomes within the 'Homeostasis' unit for the NEW AQA Biology Specification. Lessons include: 1. Sexual and asexual reproduction 2. Meiosis 3. Gene expression & inheritance 4. DNA structure & protein synthesis 5. Inherited disorders & genetic screening 6. Variation 7. Selective breeding 8. Genetic engineering 9. Ethics of gene technologies 10. Evolution by natural selection 11. Evidence for evolution - Fossils 12. Extinction 13. Evolution of antibiotic resistant bacteria The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
SWiftScience
NEW AQA GCSE Biology - 'Homeostasis' lessons - HT only

NEW AQA GCSE Biology - 'Homeostasis' lessons - HT only

This bundle of resources contains 9 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the 'Homeostasis' unit for the NEW AQA Biology Specification. Lessons included: 1. The brain HT 2. The eye HT 3. Common problems of the eye HT 4. Plant hormones & responses HT 5. Using plant hormones HT 6. Controlling body temperature HT 7. Removing waste products HT 8. The kidney HT 9. Dialysis & kidney transplants HT The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology – New systems of classification

NEW AQA GCSE Trilogy (2016) Biology – New systems of classification

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Ecology' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to evolutionary trees, pupils will be shown how to interpret evolutionary trees and understand the common ancestry between species of organisms. Pupils will then be shown the difference between convergent and divergent evolution. The next part of the lesson will focus on the work of Woese et al, pupils will watch a video and try to answer questions about Woese and his work, this can be assessed using the answers which can be revealed once the video has been watched. Pupils can then watch a second video, using this video they will then try to complete profile cards for three domains as proposed by Woese – archaea, bacteria and eukaryotes. Pupils can again check their work against the answers provided in the PowerPoint slide. Pupils will then be given some information on Woese and his work, students will need to use this information along with what they have learnt so far in the lesson to complete a newspaper article on his work and infamous discovery. The next part of the lesson looks again at evolutionary trees, pupils are shown how to use an evolutionary tree to compare the relationships between organisms. Pupils will then need to complete an exam-style question on evolutionary trees, which can be self-assessed using the mark scheme provided. The plenary task is for pupils to come up with questions for a set of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Biology (2016) - The eye HT

NEW AQA GCSE Biology (2016) - The eye HT

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found. Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided. The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed. The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided. The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Evolution of antibiotic resistant bacteria

NEW AQA GCSE Trilogy (2016) Biology - Evolution of antibiotic resistant bacteria

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a introduction to the development of antibiotic resistant bacteria, this is looked at more closely with a video. Whilst watching the video pupils will need to answer questions, this work can be self-assessed using the marking criteria once complete. Using the knowledge of how bacterial populations develop resistance to antibiotics pupils can complete a cartoon strip to demonstrate how this process occurs. Pictures for each stage will be provided, pupils will be required to complete the captions boxes for each depiction choosing from a list of key words to include. The next part of the lesson focuses on preventing antibiotic resistance, pupils can draw a table in their books and in pairs or in groups will be given some cards of information on the different ways to prevent the development of antibiotic resistant strains of bacteria. Pupils will need to use this information to complete their table. The last focus of the lesson is on the spread of MRSA within a hospital setting and how hospitals have responded to the crisis. Pupils will be given a set of newspaper reports, they should read them through in pairs or in groups and use them to answer a set of questions. Pupils can self-assess their work against the marking criteria once they have completed this task. The final task is a set of exam-style questions on this topic, pupils of a higher ability should complete this task at the back of their book and try not use their notes to help them. Those students of lower ability can discuss the answers with their partner if necessary. Once completed students can use the mark scheme to assess their work. The plenary task is for pupils to come up with three quiz questions to test their classmates knowledge of what they have learnt this lesson. If there is time you could ask some pupils to read out their questions for a mini-quiz at the end of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Selective breeding

NEW AQA GCSE Trilogy (2016) Biology - Selective breeding

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The task begins with pupils being asked to think > pair > share the specific characteristics that farmers might find favourable in cows, crops, chicken and sheep. The next activity involves pupils watching a video on selective breeding and how this process works, pupils will need to answer questions as they watch the video. The work can be assessed when they finish using the mark scheme provided. Pupils will now understand the process of selective breeding, the next task requires pupils to choose two dogs from a selection of dog breeds (pictures provided) to breed together in order to produce offspring with the traits the student would like. They can sketch a flow diagram to demonstrate how thus process occurs. The next activity is a worksheet on chicken breeds, once students have completed they can use the mark scheme to self or peer assess their work. The final activity focuses on the problems with selective breeding, pupils are provided with some information which could be tag-read as a class. This can then be used to answer some quick-check questions. Once the questions are complete this work can be self-assessed using the answers provided. The plenary task is for pupils to use a list of key words to write a summary sentence about what they have learnt from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Evidence for evolution: Fossils

NEW AQA GCSE Trilogy (2016) Biology - Evidence for evolution: Fossils

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to fossils, a definition of a fossil and a task for pupils to think > pair > share how the remains of dead organisms could be preserved for millions of years. After a short classroom discussion about the ideas pupils have come up with, pupils can move on to the next task. Pupils will each be given a different piece of information on the ways in which fossil remains can be preserved. Pupils can move around the room and discuss their cards of information and use each others to take notes on these processes. Pupils will then watch a video on how fossils are formed, using this video pupils will need to answer questions in their books. This work can be self-assessed using the marking criteria provided. The next part of the lesson focuses on why fossils do not provide a complete record of evolution. After this has been explained, using the information and images provided on the PowerPoint slide, pupils can complete some quick check questions on what they have learnt this lesson. Once complete pupils can mark their work using the answers provided. The final task is for pupils to complete a table to demonstrate the evolution of the horse, they will each be given a card of information on a particular stage of evolution. They can use each other to complete the full picture of how the horse evolved, completing their own table in chronological order. The last task is a set of exam-style questions on what pupils have learnt this lesson, they can answer these at the back of their books for an extra challenge. A mark scheme is provided for pupils to assess and correct their work once it is complete. The plenary task is for pupils to summarise what they have learnt this lesson as three facts, three key words and a question to test their peers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis

NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a definition of homeostasis and pupils will then need to discuss in pairs the conditions that they think need to be controlled by the body. This leads on to revealing these factors and looking specifically at the way in which water can be lost and gained by the body. Pupils the complete a couple of questions on the topic. Next is a focus on temperature control in the body, pupils need to consider what might happen if the temperature rises too high or falls too low and come up with ideas about how this might affect the body. Having already covered enzymes hopefully they might have some clue about what might happen. You can reveal the answer and pupils then need to complete a small worksheet to summarise these ideas. Next pupils are challenged to think about what parts of our body control our reactions, pupils are asked to complete a challenge which gets them thinking about coordination and they will then write down any organs they think were involved with this process. The nervous and endocrine system are then introduced, pupils will need to copy and complete summary sentences to describe the main structures and functions of these two systems in controlling the body. Pupils will then complete an exam question on the differences between nervous and endocrine control, the mark scheme is provided for pupils to mark their work. Finally pupils look at the role of negative feedback in the body and how this works with the example of temperature control. Pupils will need to sketch a simple graph into their books and use labels provided to demonstrate how this process occurs. Again, the finished diagram is included so pupils can assess their own work. A plenary activity is to complete an exit card listing key words, facts and to pose a question about the work covered in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT

NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT

This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the reasons why a patient might be suffering with kidney damage and introduced to the treatments pupils will be learning about this lesson: dialysis and kidney transplants. For the next part of the lesson pupils will then need to get into four groups, two groups will read information on the treatment of dialysis and two will read information on kidney transplants. Using this information pupils will answer questions in their book and once a group has finished with one of the treatments, they should swap with another groups and answer questions about the other treatment. This task should take 40 minutes in total, once finished pupils should self-assess their work using the answers provided on the PowerPoint presentation. The last activity is for pupils to answer an exam-style question on the function of the kidneys and treatment for patients with kidney disease, once completed pupils can mark their work using the mark scheme provided. The plenary task is a 3-2-1 task, pupils write down 3 facts, 2 key words and 1 question to test peers knowledge of the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Biology (2016) - Plant hormones & responses HT

NEW AQA GCSE Biology (2016) - Plant hormones & responses HT

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an outline of the sorts of stimuli that plants response to - light, moisture & gravity - pupils are asked to think > pair > share why they think that it is important that plants respond to these stimuli. Pupils are then introduced to the term 'tropism' and are shown the sort of tropisms plants undergo due to light and gravity. Pupils will then watch a video on this topic and will need to answer questions whilst watching, this work can then be self-assessed once they have finished the video. Pupils will then be provided with posters of information which outlines the role of auxins during phototropism and gravitropism, using this information pupils will need to complete tasks on their worksheet. Once this task has been completed pupils can either self or peer-assess their work using the mark scheme provided. The final activity is an exam-style question which pupils should complete in silence and as an extra challenge they could try and complete it in the back of their books, not using any notes from the lesson. The work can then be self-assessed using the mark scheme provided. The plenary task is for pupils to summarise what they have learnt in three sentences, using the list of key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering

NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > share > pair task for pupils to consider the definition of genetic engineering, once pupils have had a discussion about this the answer can be revealed. Pupils will then be shown a video about the steps involved with genetic engineering, pupils will need to answer questions whilst watching the video. Pupils can then check their work against the answers provided and correct anything they perhaps didn't get during the video. Pupils will then be given a diagram of the genetic engineering process, specifically using the example of the human gene for insulin being inserted into a bacterium. Pupils will need to copy the diagram into their books and choose the correct statements, from a jumbled list, to go with the correct steps. Pupils can self or peer-assess their work once this task is complete. The next part of the lesson is on the genetic modification of crops, pupils will firstly watch some videos which outlines various viewpoints of the growth and consumption of GM crops. Pupils should watch the videos and note down any benefits or problems they identify, a class discussion can follow this to ensure all students got the important points. The benefits of GM crops will then be highlighted to students with the aim to be used to feed the world's starving nations. After pupils have read through this they will be asked to come up statements that a collection of people might make about GM crops - an organic farmer, a charity worker for a world hunger organisation, a GCSE student and a GM scientist. The final activity is for pupils to complete the exam-style question on genetic engineering, once completed pupils can assess their work using the mark scheme provided. The plenary is for pupils to pick a task - either write a summary sentences including a list of key words or identify the questions for a list of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Human Reproduction

NEW AQA GCSE Trilogy (2016) Biology - Human Reproduction

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts by pupils discussing what they think might be some differences between primary and secondary sexual characteristics in males and females. Once they have brainstormed their ideas and you have carried out a short classroom discussion you can identify the differences between these two sets of characteristics. The next slide provides students with a long list of statements describing secondary sexual characteristics of both males and females, pupils will need to sort the statements into two columns - male female - some will go into both. Once finished pupils can assess their work using the answers. Now pupils will look at the structures found in both male and female reproductive systems and the roles they play. Pupils will be shown a diagram to demonstrate these parts and then pupils will be given a blank worksheet and a set of jumbled statements, they will need to match the structures to the correct part on their diagram. This work can then be assessed to check they have correctly matched the organs and functions. Pupils will now watch a video introducing the menstrual cycle, using the video pupils will need to try and write a describe the roles each of the female hormones - oestrogen, progesterone, FSH, LH - plays in the menstrual cycle. If pupils weren't able to get down a detailed answer they can mark and correct their work using answers provided. The final activity is an exam-style question, along with the mark scheme to check their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Gene expression & inheritance

NEW AQA GCSE Trilogy (2016) Biology - Gene expression & inheritance

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW, it contains some higher-tier only content. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson firstly begins with a description and definition for gene expression in a cell, this leads onto introduce the idea of a mutation. Pupils are given a definition of a mutation and are asked to consider whether mutations are always negative effects. This leads onto show the ways in which a mutation can affect a protein/enzyme in the body and the effect that could have on the function of body processes. Next is a quick check-silent 5 activity to assess students knowledge of gene expression and mutation, pupils can answer the questions in their book and mark their work using the answers provided. There is on further activity on mutations, pupils will watch a video on sickle cell anaemia and answer questions in their books. The next section of the lesson is on inheritance, firstly pupils are introduced to the idea of alleles and are shown the genotypes of three rabbits with either black or white fur colour to show that it is the combination of alleles that determines this characteristic. Pupils are asked to complete some questions based on what they have learnt so far, which can be assessed using the answers provided. Next pupils are introduced to the difference between genotype and phenotype, homozygous and heterozygous genotypes. Pupils will then be given a set of images and are asked to identify whether these images are representing a genotype or phenotype, if it is a genotype they are asked to determine if it is homozygous or heterozygous. This work can then be assessed. Pupils are now shown how to construct a genetic diagram using a worked example, they are then given another genetic cross for which they need to construct their own genetic diagram and work out the percentage of each offspring that would be present, this work can be self-assessed. The final task is on sex determination, pupils are introduced to the idea of X & Y chromosomes and are shown the combinations needed to produce a male or a female. Pupils will need to construct their own genetic diagram to show the percentage chance of a baby being male or female. This topic can also be assessed using an exam-style questions for higher ability pupils. The plenary activity is for pupils to write a glossary in the back of their books for any new key words they have learnt this lesson All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Biology - 'Infection & Response' lessons

NEW AQA GCSE Biology - 'Infection & Response' lessons

This bundle of resources contains 16 lessons which meet all learning outcomes within the 'Infection & Response' unit for the NEW AQA Biology Specification. 1. Health & Wellness (2 lessons) 2. Pathogens & Disease 3. Preventing infections 4. Defence mechanisms 5. Antibiotics & painkillers 6. Vaccination 7. Bacterial diseases 8. Viral diseases 9. Fungal & protist diseases 10. Cancer 11. Antibiotic Resistance 12. Drug Trials FREE HIGHER TIER LESSONS INCLUDED: 12. Growing Bacteria 13. Monoclonal Antibodies 14. Plant diseases and responses The lessons contain a mix of differentiated activities, mid-lesson progress checks, 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks. A few of the lessons contain extra resources at the end of the PowerPoint presentations which could be used as homework material.
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT

NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW, for the higher tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a think > share > pair task on the definition of a species, pupils ca try and come up with their own definitions before you reveal the true answer. The next part of the lesson focuses on Alfred Russel Wallace and his work on the theory of speciation. Pupils will need to watch the video on Wallace and using the video come up with a timeline or notes on the life events and work produced by Wallace in his lifetime. Once this task is complete pupils can compare what they have written against success criteria provided, pupils can mark, correct and add any important notes using the criteria. The next part of the lesson focuses on the process of speciation, firstly pupils will need to watch a video about organisms which are separated and the develop certain characteristics depending on the environment they are living in. The second video provides a more detailed description of how speciation occurs, pupils will need to answer questions whilst watching this video. Pupils can mark their work using the mark scheme provided once they have completed this task. The next task is a card/statement sort, pupils will need to place the statements provided (can cut out as a card sort) into the correct order to describe the process of speciation, once pupils have completed this task they can mark their work. The final activity is an exam-style question on speciation, pupils will need to complete the exam question in their books (at the back without notes as an extra challenge). Once pupils have completed the exam question they can self or peer assess their work using the mark scheme provided. The plenary task is for pupils to write a twitter message by Alfred Wallace about his work on the theory of speciation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Triology (2016) Biology - Extinction

NEW AQA GCSE Triology (2016) Biology - Extinction

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a video and a set of questions which pupils will need to answer about extinction and try and come up with a definition for this term. Once completed pupils can check their work against the answers provided on the PowerPoint. The next activity is for pupils to think > pair > share ideas about the sorts of changes that might occur within an organisms environment to bring about extinction. Pupils can discuss with their partner and create a mind map of their ideas in their books. Once pupils have completed this you can reveal some of the reasons for environmental change on the PowerPoint slide and pupils can check what they have got against the answers, adding in any they didn't manage to get. The next activity is for pupils to read some cards of information about the causes of extinction, pupils can work in pairs or groups to read through these causes and summarise each one in their books. To put thees causes into context, the next activity is for pupils to look at examples of organisms which are at the brink of extinction and the reasons why. Pupils will be given a set of cards with information about a range of animal and plant organisms which are at different stages on the IUCN red list. Pupils will need to complete a table of information to describe the habitat and reasons why four of these organisms are endangered. The last part of the lesson will focus on mass extinctions, pupils will watch a video and answer questions about the causes and repercussion of mass extinction events. Once completed pupils can mark their work against the assessment criteria. The plenary activity is for pupils to pretend they are a conservationist campaigning to protect an organism of their choice, they need to write a twitter message to their followers to raise awareness of the factors which may be critically affecting the organism. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience
NEW AQA GCSE Trilogy (2016) Biology - Reaction time - Core Practical

NEW AQA GCSE Trilogy (2016) Biology - Reaction time - Core Practical

This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by pupils being provided with the aim of the investigation plus an equipment list, pupils will need to use this to decide what the independent, dependent and control variables of the practical may be. The next slide runs through some of the important details of the practical, using this pupils will then need to write a step-by-step method summarising how they are planning to conduct their investigation, they can work in groups to plan this but must complete their own worksheet. Next, pupil will conduct the experiment to measure the effect of a distraction on student volunteers reaction time. Results should be collected using the worksheet provided, once they have collected their raw data they can use this (as well as the calculation provided) to work out the reaction time for each volunteer in each trial, and a mean can be calculated. Once the second table of results on the calculated reaction times have been filled in pupils can complete their graph of results, this can then be used to write a conclusion using prompt questions provided on the plenary slide of the PowerPoint presentation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
SWiftScience