Hero image

SWiftScience's Shop

Average Rating4.26
(based on 749 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

621Uploads

752k+Views

445k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Reaction Profiles & Bond Energy Calculations
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reaction Profiles & Bond Energy Calculations

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided. Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles. The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided. Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint. The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided. Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work. The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Electrolysis
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Electrolysis

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Firstly, students are introduced to the term ‘Electrolysis’ including a description of the process, a list of key words associated with the process and a diagram. Students will now watch a video about the process, using which students will need to answer a set of questions. After they have completed this task they will be able to self-assess their work using the mark scheme provided. Students will now complete a fill-in-the-blank task to summarise what they have learnt so far, this can be assessed using the answers provided. Pupils are now shown a diagram to demonstrate what is happening at the anode and cathode during the electrolysis of lead bromide, pupils will need to use the list of key words provided to complete captions to describe what is happening at each electrode. Students can check their work against the example answers provided in the PowerPoint. Next, pupils are shown the ionic half-equations for the reactions occurring at the anode and cathode during the electrolysis of lead bromide. Pupils will then need to identify the products at each electrode, as well as complete the ionic half-equations, for the electrolysis of a set of ionic compounds: lihtium oxide, sodium chloride and magnesium chloride. Once complete, pupils can self-assess their work using the answers provided. The next part of the lesson focuses on the products formed at each electrode when the ionic compound is within an aqueous solution. Students will be shown what will happen at the anode and at the cathode, using this information they will need to predict the products formed at the anode/cathode during the electroysis of set of solutions. Students can self-assess their using using the answers provided. The final task focuses on the electrolysis of brine, students will watch a video and will need to answer a set of questions using the information provided in the video. After completing this task, pupils will need to self-assess their work using the answers provided. The plenary task requires pupils to write a ‘Whatsapp’ message to a friend to explain what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Chemical cells, batteries and fuel cells
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Chemical cells, batteries and fuel cells

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a diagram to show how chemical cells/batteries work by relying upon the differing reactivity of metals. Students will then watch a video and will need to answer a set of questions using the information provided in the video, students can then self-assess their work using the mark scheme provided in the PowerPoint. Students will now need to complete an investigation into the potential difference produced by different chemical cells by following the instructions on the practical sheet provided. Pupils will need to record the results of their investigation and write a conclusion on the practical worksheet. The next task is a ‘Quick Check’ to assess students understanding of what they have learnt so far this lesson, pupils will need to complete a set of questions and they can then self-assess their work using the answers provided in the PowerPoint. The last part of the lesson will focus on fuel cells, students will watch a video and using the information provided they will need to ask a set of questions. The answers to these questions are included in the PowerPoint, so students can check their work once this task is complete. Finally, students will be given a set of information on hydrogen fuel cells which they can read in pairs. Using this information pupils will need to produce a table to sum the advantages and disadvantages of using hydrogen fuel cells as an energy source. Students can then check their work against answers provided in the PowerPoint. The plenary task is for pupils to summarise what they have learnt this lesson in three sentences, using key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle
SWiftScienceSWiftScience

NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle

7 Resources
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification. Lessons include: Rates of reaction Reversible reactions Rate of reaction: The effect of catalysts Rate of reaction: The effect of concentration & pressure Dynamic equilibrium & altering conditions Collision Theory: The effect of temperature & surface area. The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - Chemical Analysis
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - Chemical Analysis

5 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical Analysis’ unit for the NEW AQA Chemistry Specification. Lessons include: Pure substances & mixtures Analysing chromatograms Testing for gases Testing for positive and negative ions Investigative analysis The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons

11 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical changes, Electrolysis and Energy Changes’ unit for the NEW AQA Chemistry Specification. Lessons include: The Reactivity Series Displacement Reactions Extracting Metals Making Salts Neutralisation & Strong/Weak Acids Electrolysis Aluminium Extraction Exothermic & Endothermic Reactions Reaction Profiles & Bond Energy Calculations Chemical cells, batteries and fuel cells The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers. Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain. Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work. The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember. The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided. The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Water Treatment
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Water Treatment

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly come up with a mind map of ideas about why water is such an important resource, they can discuss with their partner and write their ideas in their books. Some of the reasons can then be revealed via the PowerPoint presentation and pupils can assess their work - making corrections where necessary. Pupils are then shown a quick recap of the stages involved in the water cycle, before beginning to look at the treatment of fresh water and purification of salt water. Students will be given a worksheet of questions, around the room will be information sheet on how fresh water is turned into potable, drinking water and how sea water is purified. Pupils will need to read the information posters to answer their questions, this work can then be self-assessed using the mark scheme provided. The next part of the lesson will focus on waste water treatment, pupils will watch a video on the steps involved with sewage treatment. Pupils will answer a set of questions whilst watching the video, this work can then be self-assessed using the answers provided. The final task is for pupils to complete an exam-style question on this topic, they can answer in their books and either self or peer assess using the mark scheme provided. Finally, pupils will be given a set of answers, they will need to come up with questions which match these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification. Lessons include: States of matter Forming ions Ionic bonding Giant ionic lattices Covalent bonding Simple and giant covalent structures Metallic bonding & giant metallic structures Nanoparticles The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on the problems of metal extraction, particularly to the environment. Students will firstly brainstorm their ideas of how metal extraction can cause problems, then some examples are revealed using the PowerPoint presentation and the need for recycling is also explained. Students will then need to complete a progress check, a set of questions to assess their knowledge of what they have learned this lesson. The answers to which are included in the PowerPoint presentations so students can self-assess or peer-assess work. Pupils will now focus on the extraction and recycling of three metals: aluminium, copper and iron. They will firstly be given some information sheets on these three metals and using these they will need to answer a 6-mark exam question which requires pupils to give a use for each metal and outline reasons why they should be recycled by listing both economic and environmental reasons. This task can then be peer or self-assessed using the comprehensive mark scheme provided. Pupils will now watch a video which outlines limits to recycling, pupils will need to answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided. The last task is a word search, pupils need to find a list of key words in the word search and for each word they find they need to write a sentence which links that word to the extraction of metal from it’s ore. The plenary activity is for pupil to spend five minutes thinking about what they have learned in the lesson - what they have understood and what they would like to spend more time on. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW AQA GCSE  (2016) Chemistry - Endothermic and Exothermic Reactions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Endothermic and Exothermic Reactions

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, for more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a description of an exothermic reaction, including examples such as the thermite reaction and the screaming jelly baby reaction. This includes link to videos to demonstrate the energy transfers which are taking place during these exothermic reactions. Pupils are then asked to think>pair>share ideas about what an endothermic reaction might be and to come up with any examples if they can. Once students have had chance to discuss in groups, they can feedback to the class for a brief class discussion before the answer and examples are revealed using the PowerPoint presentation. The next part of the lesson requires pupils to undertake an investigation into different reactions, they will identify whether three different chemical reactions are either endothermic or exothermic bu measuring the temperature change for each of them. Students should follow the instructions included and record their results in the table provided. Students are now introduced to energy level diagrams to explain what is happening during an endothermic and exothermic reaction, they can sketch an example of each in their books for future lessons on energy profiles. The next part of the lesson will be a progress check, students should answer in their books and the work can be self-assessed using the answers provided. The last part of the lesson is on uses of endothermic and exothermic reactions in products, students will each be given a card of information. They will need to share their information with others to complete a table in their books to describe each of the products, identify if it is an endothermic or exothermic reaction and evaluate the advantages and disadvantages. The plenary task is for pupils to come up with their own product which uses either an endothermic or exothermic reaction. Thank you, leave any questions in the comment section :)
NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons

10 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organic Chemistry’ unit for the NEW AQA Chemistry Specification. Lessons include: Alcohols, carboxylic acids and esters. Complete & incomplete combustion Cracking hydrocarbons Fractional distillation Hydrocarbons Natural polymers & DNA Polymerisation Reactions of alkenes The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry  - Extracting Aluminium
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Extracting Aluminium

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly need to brainstorm ideas about the uses of aluminium, they can discuss their ideas with their partners and complete a mind map in their books. Some examples can then be revealed using the PowerPoint slide and pupils can check how many they got right, filling in any they may have missed. Pupils will then watch a video on the extraction of aluminium, students will need to answer a set of questions using the information provided in the video. Their work can be self-assessed using the answers provided. Students will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, students can check their work agaisnt the mark scheme provided. Next, students will be given a diagram of the electrolysis of aluminium oxide, pupils will need to complete this diagram by selecting the correct captions from a list provided on the board. Students can then check their work against the answers provided in the PowerPoint. The next task is a progress check, students will need to answer questions to assess their knowledge of what they have learnt so far this lesson. Pupils can then self or peer-assess their work using the answers provided. The plenary task is a 3-2-1 task, pupils will need to write 3 facts, 2 key words and one question to assess their peers knowledge of the topics covered this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Rates of Reaction
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rates of Reaction

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a ‘Think, Pair, Share’ task to get students thinking about what the rate of a reaction tells us about that chemical reaction. After a short partner and class discussion, the answer can be revealed to the class via the PowerPoint slide. This is followed by a task whereby students need to place a mixture of chemical reactions in order of their speed, getting students to think about which of these reactions might have the fastest rate of reaction. Students are then introduced to the two ways in which scientists can measure the rate of reaction - how much product formed/how much reactant is used up over a given time. Students will be asked to read some information about this topic and then answer questions on it, this work can be self-assessed using the answers provided in the PowerPoint. Students will then watch a video on how to calculate the rate of a reaction using a graph, students can self-assess their answers using those provided in the PowerPoint presentation. Students will then practice these skills by plotting a graph using a set of data, which they will then need to use to answer a set of questions, this can be self-assessed using the mark scheme provided. The next video outlines how students can use a graph to a work out the rate of a reaction at a fixed point, students will answer questions whilst watching the video and then self-assess their work using the answers provided. Lastly, students will again practice this skill by plotting a graph using data provided and then will need to use the graph to work out the rate of reaction at different fixed points. This work can be self-assessed using the answers provided. The plenary task is is for pupils to complete one of a choice of sentences starters, which would summarize what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - The Earth's Atmosphere
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - The Earth's Atmosphere

4 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Atmosphere’ unit for the NEW AQA Chemistry Specification. Lessons include: The History & Evolution of Our Atmosphere The Greenhouse Effect Global Climate Change Atmospheric Pollutants The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE (2016) Chemistry  - Neutralisation & Strong/Weak Acids
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Neutralisation & Strong/Weak Acids

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be shown a set of images, students will have to decide which are examples of an alkali/base and which are examples of acids. Next, students will watch a video on acids/alkalis and will need to answer a set of questions, after which they can self-assess their work using the mark scheme provided. The next part of the lesson focuses on pH, students are firstly reminded of the importance of the pH scale and will then need to complete an investigation to identify the pH of different substances. Students can use the practical sheet provided to complete this task, including the results table to record their results. The next part of the lesson looks at the difference between concentrated and dilute solutions, in terms of particles and in terms of risk/hazards when handling concentrated acids. Students will then need to summarise what they have learned with a fill-in-the-blank task, this work can be self-assessed using the mark scheme provided. The final part of the lesson pupils will focus on the difference between strong and weak acids in terms of ionisation. Students will also look at how pH values are related to the concentration of H+ ions, students will need to copy and complete a table to show the concentration of H+ ions per mol dm3 for each pH value, this work can then be self-assessed using the mark scheme provided. The plenary task is a ‘Pick a plenary’ task - pupils will need to either write a twitter message to summarise what they have learnt or write 5 quiz questions on the topics studied in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Acids  & Alkalis Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Acids & Alkalis Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.4 Module on ‘Acids & Alkalis’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Atomic Structure & The Periodic Table' Revision Placemat
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Atomic Structure & The Periodic Table' Revision Placemat

(0)
This task is designed for the NEW AQA GSCE Chemistry. Included in this resource is a ‘revision placemat’ for Atomic Structure and the Periodic Table, including defining an element, drawing electronic structures, organising the periodic table and the structure of the atom. Pupils will also revise the mass and atomic number as well as properties of alkali metals, noble gasses, and word/balanced equations including a word equation for displacement in halogens. There are 12 revision questions in total. Pupils may use their books if necessary but should test their knowledge by attempting to answer all questions from memory first. The solution for this activity is also included so you can check their answers, or they may self-assess. Thanks for looking, if you have any questions, please let me know in the comments section and any feedback would be appreciated :) For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
KS3 ~ Year 7  ~ Elements, Atoms & Compounds Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Elements, Atoms & Compounds Homework

(4)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.2 Module on ‘Elements, Atoms & Compounds’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)