Hero image

SWiftScience's Shop

Average Rating4.26
(based on 749 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

621Uploads

758k+Views

446k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) Chemistry - Relative Formula Mass & Moles
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Relative Formula Mass & Moles

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to relative atomic mass, including an explanation of how we can use the periodic table to find the atomic masses of different elements. In order to assess their understanding of this topic pupils will then complete a table identifying the atomic number, mass number and the number of electrons/protons/neutrons found within atoms of specific elements. This task can then be assessed using the answers provided in the PowerPoint presentation. Pupils will now think about what the formula of a chemical compound tells us about the elements found in that compound. Using examples pupils will be taught about formulae, they will then be given a list of formulae for various different chemical compounds and will need to list the different elements found in that compound as well as the number of atoms of each of the elements. This task can then be assessed using the answers provided. The next part of the lesson will focus on relative formula mass, pupils will be taught, using a worked example, how to calculate the relative formula mass for a chemical compound. They will then need to complete tasks involving the calculations of relative formula mass, once complete pupils can self-assess their work using the answers provided. The last part of the lesson focuses on moles, the definition is first introduced to pupils which can be explained further using the link the video included in the PowerPoint. Pupils are then shown how to calculate the number of moles of a substance using the relative formula mass and actual mass of a substance. Pupils will be then need to complete a set of calculations to work out the moles of different substances, this task can be assessed using the answers provided. Pupils are lastly shown how to rearrange this calculation where needed, they can then apply this skill to a new set of problems. The answers to which are included in the PowerPoint presentation, pupils can use this to assess their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification. Lessons include: States of matter Forming ions Ionic bonding Giant ionic lattices Covalent bonding Simple and giant covalent structures Metallic bonding & giant metallic structures Nanoparticles The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Rates of Reaction
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rates of Reaction

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a ‘Think, Pair, Share’ task to get students thinking about what the rate of a reaction tells us about that chemical reaction. After a short partner and class discussion, the answer can be revealed to the class via the PowerPoint slide. This is followed by a task whereby students need to place a mixture of chemical reactions in order of their speed, getting students to think about which of these reactions might have the fastest rate of reaction. Students are then introduced to the two ways in which scientists can measure the rate of reaction - how much product formed/how much reactant is used up over a given time. Students will be asked to read some information about this topic and then answer questions on it, this work can be self-assessed using the answers provided in the PowerPoint. Students will then watch a video on how to calculate the rate of a reaction using a graph, students can self-assess their answers using those provided in the PowerPoint presentation. Students will then practice these skills by plotting a graph using a set of data, which they will then need to use to answer a set of questions, this can be self-assessed using the mark scheme provided. The next video outlines how students can use a graph to a work out the rate of a reaction at a fixed point, students will answer questions whilst watching the video and then self-assess their work using the answers provided. Lastly, students will again practice this skill by plotting a graph using data provided and then will need to use the graph to work out the rate of reaction at different fixed points. This work can be self-assessed using the answers provided. The plenary task is is for pupils to complete one of a choice of sentences starters, which would summarize what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW KS3 ~ Year 8 ~ The Earth
SWiftScienceSWiftScience

NEW KS3 ~ Year 8 ~ The Earth

8 Resources
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 C2 1.4 'The Earth’ Unit. Lessons include: Earth & It’s Atmosphere Sedimentary Rocks Igneous & Metamorphic Rocks The Rock Cycle The Carbon Cycle Climate Change Recycling The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lessons starts with looking at the way in which we use models to represent the structure of different compounds, models include the 3D ball and stick model, 2D ball and stick model, dot and cross diagrams and displayed formula showing bonds. Pupils are reminded of the limitations of some of these models, this is something they should be able to recount. Pupils are now shown a diagram to show how intermolecular forces act between simple covalent molecules, pupils should be able to explain the difference between the strong covalent bonds between atoms but the weak intermolecular forces between molecules and how this relates to the the low melting and boiling points of simple covalent molecules. The next part of the lesson is going to focus on giant covalent structures, firstly pupils will watch a video and answer a set of questions. Their work can be self-assess using the answers provided on the PowerPoint presentation. Students are then introduced to the three main covalent structures - diamond, graphite and silicon dioxide. Students will be given a set of information on these structures which they will need to use to complete their worksheet on giant covalent structures. To assess their knowledge of this topic there is a set of ‘quick check’ questions, pupils of a higher ability may want to complete these questions in the back of their books without discussing with others. The work can be assessed using the mark scheme provided. The last part of the lesson focuses on fullerenes and graphene - two other giant covalent structures with unique properties. Students are firstly introduced to the structure and uses of these compounds before watching a video and answering questions about them. The work from this task can be self or peer assessed using the answers provided. The plenary task is for pupils to pretend they are a scientist researching the use of nanotubes, fullerenes and grapehene, they need to come up two ideas of how these materials can be used in future technologies. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Useful Alloys
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Useful Alloys

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a Think > Pair > Share task for pupils to consider the properties of gold, pupils can list them down and then share their ideas with the class. The property of gold being very soft is not always useful, especially when it is being used to make jewelery and so it is often mixed with another metal (e.g. platinum) to make it stronger. The concept of an ‘alloy’ is then introduced, as well as a definition and an explanation as to why alloys are useful. Some useful properties of alloys are listed - malleable, durable, strong, flexible - pupils need to come up with a a definition for each of these properties. Once this task is complete students can self-assess their work using the mark scheme provided. The next task for pupils to complete is ‘Who’s right for the job?’ - students will be given information on the properties of different metals, as well as a list of alloys needed for different jobs - used in jewelery/used to make airplane bodies. Students need to select the correct metals to make the alloys required, their work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on iron alloys specifically, firstly students will watch a video on iron alloys and will need to answer a set of questions - this work can then be self-assessed using the answers provided. The last task for pupils to complete is a table whereby students need summarise how carbon content affects steel and it’s properties, this work can also be self-assessed using the mark scheme provided. The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - The Earth's Atmosphere
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - The Earth's Atmosphere

4 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Atmosphere’ unit for the NEW AQA Chemistry Specification. Lessons include: The History & Evolution of Our Atmosphere The Greenhouse Effect Global Climate Change Atmospheric Pollutants The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons

13 Resources
This bundle of resources contains 10 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Atomic Structure and the Periodic Table’ unit for the NEW AQA Chemistry Specification. Lessons include: 1. Atoms, elements, compounds & mixtures 2. Chemical reactions & equations 3. Separating mixtures 4. The structure of the atom 5. The development of the atomic model 6. Electronic configuration 7. Mendeleev and the periodic table 8. Group 1: The alkali metals 9. Group 7: The halogens 10. Group 0: The noble gases The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry  - Atmospheric Pollutants
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Atmospheric Pollutants

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers. The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint. Pupils will now watch a video on complete vs. incomplete combustion to think about the gases released into the atmosphere via these two processes. They will need to answer a set of questions whilst watching this video, they can then self-assess their work using the answers provided. Two further atmospheric pollutants are now introduced to the class - nitrogen oxides and also solid particulates released by diesel engines. Pupils will now complete a fill-in-the-blank task to summarise what they have learned to far this lesson, this task can then be self-assessed using the answers provided. This is followed by a quick check ‘True or False’ activity, pupils will need to identify whether a list of statements are true or false. The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results. The plenary task is for pupils to either summarise what they have learned today in three sentences or write a definition of a list of key words from today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - The Earth's Resources
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - The Earth's Resources

5 Resources
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Resources’ unit for the NEW AQA Chemistry Specification. Lessons include: Finite & Renewable Resources Water Treatment Extracting Metals from Ores Life Cycle Assessments Reduce, Reuse, Recycle The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE (2016)  Chemistry - Water Treatment
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Water Treatment

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly come up with a mind map of ideas about why water is such an important resource, they can discuss with their partner and write their ideas in their books. Some of the reasons can then be revealed via the PowerPoint presentation and pupils can assess their work - making corrections where necessary. Pupils are then shown a quick recap of the stages involved in the water cycle, before beginning to look at the treatment of fresh water and purification of salt water. Students will be given a worksheet of questions, around the room will be information sheet on how fresh water is turned into potable, drinking water and how sea water is purified. Pupils will need to read the information posters to answer their questions, this work can then be self-assessed using the mark scheme provided. The next part of the lesson will focus on waste water treatment, pupils will watch a video on the steps involved with sewage treatment. Pupils will answer a set of questions whilst watching the video, this work can then be self-assessed using the answers provided. The final task is for pupils to complete an exam-style question on this topic, they can answer in their books and either self or peer assess using the mark scheme provided. Finally, pupils will be given a set of answers, they will need to come up with questions which match these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - The properties of polymers
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - The properties of polymers

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be given a recap on the definition of a polymer and an explanation of the factors which can affect the properties of a polymer. Pupils are then given some information about high-density polyethene and low-density polyethene, they will need to use this information to complete a worksheet of questions. This work can then be self-assessed using the mark scheme provided. Pupils will now complete an investigation into the modification of polymers by finding how the quantity of borax solution can affect the properties of slime, they can record their observations in a table in their books. Next, students are introduced to the processes of thermosetting and thermosoftening polymers with a video - using the information in the video they will need to answer a set of questions. This work can be self-assessed using the mark scheme provided. The last task is a ‘Quick Check’ task - pupils will need to answer a set of questions about what they have learned this lesson. Their work can then be self-assessed using the mark scheme provided in the PowerPoint. The plenary is a ‘Pick a plenary’ activity which requires pupils to either unscramble a set of anagrams or write a summary sentence for the lesson using a list of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Glass, ceramics & composites
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Glass, ceramics & composites

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly given a set of different objects on their desks and they are also provided with a list of properties, for each object students need to use the words from the list provided to identify the object’s properties. This work can be self-assessed using the mark scheme provided. The next task for pupils to complete is an ‘Each one, teach one’ task - in pairs, pupils are either given information about glass or ceramics, they need to learn the information and teach each other so they are able to complete a table of information on both. This work can then be peer or self-assessed using the mark scheme provided. Next, pupils will watch a video about different composite materials - they will need to answer a set of questions whilst watching the video and this can be marked using the mark scheme provided. The next activity is for pupils to investigate the differences between reinforced concrete vs. normal concrete. Finally, students will complete a ‘Quick Check’ activity - pupils will need to answer a set of questions to summarise what they have learned this lesson. This work can be self-assessed using the mark scheme provided. The plenary activity requires pupils to write a Whatsapp message to their friends outlining what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - The History & Evolution of Our Atmosphere
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - The History & Evolution of Our Atmosphere

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by looking at the percentage of different gases in our atmosphere today compared to 3 billions years ago, this then follows into a task whereby pupils will need to walk around the room to read information posters on the evolution of our atmosphere. Using the information they will need to complete a set of questions, this work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on theories of how life evolved on Earth, to begin with students need to ‘Think > Pair > Share’ their ideas about the conditions needed for life on Earth. Once this has been discussed as a class, some of the factors can be revealed on the PowerPoint presentation and one of the theories of how life evolved is outlined, using an animation. Pupils will now complete a mid-lesson progress check, this task can be self-assessed once complete. The next task requires pupils to construct a time-line of events outlining the history of the evolution of the Earth’s atmosphere and life on on Earth given the information they have learned so far this lesson. Pupils can self/peer assess their work using the mark scheme provided in the PowerPoint. The final task is for pupils to discuss their ideas about how carbon dioxide levels decreased so dramatically from being the majority of the Earth’s atmosphere to now only 0.04%. Pupils can mind map their ideas, before the answers are revealed using the PowerPoint. The plenary task is for pupils to complete a 3-2-1 of what they have learned during the lesson - 3 facts, 2 key words and 1 question. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
NEW AQA GCSE (2016) Chemistry  - Testing for gases
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for gases

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Students are introduced to the idea that scientists are able to conduct quick and simple tests to identify a number of gases - oxygen, carbon dioxide, hydrogen, chlorine. Pupils will now complete a circus of activities, moving around the room to conduct tests for the presence of oxygen, hydrogen and carbon dioxide, recording their results in a table in their books. Pupils will need to watch a teacher demonstration for the test for chlorine, they can also record their observations of this demo in their table of results. Pupils will then be shown a video outlining each of the gas tests, they can watch this to self-assess their answers from the investigations they carried out. Students will now be given a card sort, for each gas - oxygen, carbon dioxide, hydrogen and chlorine - they will need to identify the correct method and correct positive results. They should do this with their books closed so they don’t rely upon the results collected from the last task! Their work can then be self-assessed using the mark scheme provided. The next task is a ‘Quick Check’ activity whereby pupils need to answer a set of questions based upon what they have learned this lesson, the answers to this task is provided in the PowerPoint so students can either self-assess or peer-assess their work. The plenary task is ‘Take a minute’ where students need to spend a minute talking to the person next to them about what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Limiting reactants & percentage yield
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Limiting reactants & percentage yield

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be introduced to the concept of a limiting reactant, using the example of hydrochloric acid and magnesium. Pupils will then be shown the steps to take to work out the limiting reactant of a reaction, using a worked example. Using this example students can then complete a set of questions on limiting reactants, the answers these questions are provided in the PowerPoint presentation. Next pupils will watch a video on percentage yield, they will need to answer a set of questions using the video. Once complete pupils can self-assess their answers against the answers provided. Pupils will then be provided with a set of steps to help them work out the percentage yield of a chemical reaction, pupils can check they have completed this task correctly using the answers on the PowerPoint. The last task is a worksheet of percentage yield problems, pupils will need to show their working for each question. The answers are again provided on the PowerPoint presentation for pupils to self-assess their work. The plenary task is for pupils is a key word and Ar bingo task, pupils should choose 6 keys words/relative atomic masses from th board. The teacher will then read out clues, if students think that they have the word/Ar they can cross it out, first to cross all 6 our shouts bingo! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Separating Mixtures
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Separating Mixtures

(1)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the 'Atomic Structure & Periodic Table' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a reminder of what a mixture is and a list of key words related to this topics, pupils are asked to think > pair > share ideas about the definition of these key words. After a class discussion pupils are asked to link these terms, with examples, to the correct definition. Once finished they can self-assess this work. Pupils will then watch a video about different separation techniques and will be required to answer questions whilst watching, after this work is self-assess pupils will explore these methods further by completing a table of information using posters around the room. The final activity is a practical to show how chromatography works, pupils will complete this practical (should only take 10-15 minutes) and then will be introduced to Rf values, they can use this calculation to work out the Rf values of the dyes they have separated during the practical. The plenary task is for pupils to summarise what they have learnt during the lesson by using as many key words from the key word list as possible. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Rate of Reaction: The effect of concentration and pressure
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rate of Reaction: The effect of concentration and pressure

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students introduced to the idea of concentration in terms of no. of particles per cm3. Students will then need to ‘Think > Pair > Share’ their ideas of how an increase in concentration may affect the rate of a reaction. Students can use their ideas from this first task to make a prediction for the investigation into the rate of reaction between sodium thiosulphate and different concentrations of HCl. Students will need to conduct this investigation using the practical sheet provided, record their results, plot a graph of their results and complete a conclusion. Students can assess their explanation of the results they collected using the answer provided in the PowerPoint presentation. The next part of the lesson will focus on the effect of pressure on the rate of a reaction. Students will firstly be introduced to the idea of an increasing pressure leading to an increase in the number of particles per cm3, using this information and the diagrams provided pupils can ‘Think > Pair > Share’ their ideas about how an increase in pressure would affect the rate of a reaction. Their answer to this question can self-assessed using the answers provided. Next, students need to work through a set of levelled questions on the effect of pressure on the rate of a reaction. This work can be self-assessed using the answers provided on the PowerPoint. The last task is for pupils to plot a set of results onto graph paper, using these data they can calculate the initial rate of reactions for two concentrations of HCl. Students can assess their work using the mark scheme provided on the PowerPoint. The plenary task is for pupils to write down three quiz questions (and the answers!) to test their peers knowledge of what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7  ~ Elements, Atoms & Compounds Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Elements, Atoms & Compounds Homework

(4)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.2 Module on ‘Elements, Atoms & Compounds’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 8 ~ Separation Techniques Homework
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Separation Techniques Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Separation Techniques’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)