Hero image

Teach Science & Beyond

Average Rating4.88
(based on 24 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

104k+Views

70k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Energy (OCR A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Energy (OCR A Level Chemistry)

6 Resources
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy Lesson 1: Lattice Enthalpy **By the end of the lesson students will: Explain the term lattice enthalpy Understand the factors that determine the size of lattice enthalpy Explain the terms standard enthalpy change of formation and first ionisation energy** Lesson 2: Born-Haber Cycles **By the end of the lesson students will: **1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values **2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams **3. Calculate other enthalpy change values from Born Haber Cycle diagrams Lesson 3: Enthalpy Changes of Solution & Hydration **By the end of the lesson students will: **1. Define the terms enthalpy change of solution and hydration **2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid 3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration Lesson 4: Entropy **By the end of lesson students will: **1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system **2. Explain the difference in entropy of solids, liquids and gases **3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products Lesson 5: Gibbs Free Energy (Part 1) **By the end of the lesson students will: **1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system **2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T **3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation Lesson 6: Gibbs Free Energy (Part 2) By the end of the lessons students will: 1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system 2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Naming Organic Compounds
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Naming Organic Compounds

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on naming organic compounds By the end of the lesson students should be able to: Know the IUPAC rules for naming alkanes and alkenes Know the IUPAC rules for naming aldehyde, ketones and carboxylic acids Construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Students will be able to take rich notes on naming organic compounds, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of the how to name organic compounds by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Addition Reactions of Alkenes (AQA)
TeachScienceBeyondTeachScienceBeyond

Addition Reactions of Alkenes (AQA)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on addition reactions of alkenes. Suitable for the AQA specification By the end of this lesson KS5 students should be able to: To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Mechanisms for electrophilic addition include halogen halides, halogen molecules, hydrogen molecule and sulfuric acid Explanations surrounding major and minor products are also discussed in this lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Synthetic Routes in Organic Synthesis (Y13)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (Y13)

(0)
A complete lesson including starter activity, AfL work tasks, main work tasks and homework (all with answers included) on Synthetic Routes in Organic Synthesis (A level -Yr13) By the end of this lesson KS5 students should be able: i) To identify individual functional groups for an organic molecule containing several functional groups ii) To predict the properties and reactions of organic molecules containing several functional groups iii) To create multi-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Chemistry: Oxidation and Reduction in Terms of Electrons
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Oxidation and Reduction in Terms of Electrons

(0)
A complete including starter activity, AfL work tasks and main work tasks on oxidation and reduction reactions in terms of electrons. Suitable for GCSE Chemistry and higher tier combined science By the end of this lesson KS4 students should be able to: • write full ionic equations for displacement reactions • Write half equations for displacement reactions • identify in a half equation which species are oxidised or reduced The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Kinetics: The Rate-Determining Step (A level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics: The Rate-Determining Step (A level Chemistry)

(0)
A structured A level Chemistry lesson including starter activity, AfL work tasks and lesson slides with answers on the rate determining step By the end of this lesson KS5 students should be able to: To explain and use the term rate determining step To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction To predict the rate equation that is consistent with the rate determining step
Condensation Polymers
TeachScienceBeyondTeachScienceBeyond

Condensation Polymers

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers By the end of this lesson KS5 students should be able to: 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
OCR Redox Titrations (Part 1)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Titrations (Part 1)

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations **By the end of this lesson KS5 students should be able to: **LO1: To understand what a redox titration is. LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4- LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Redox Reactions
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Redox Reactions

3 Resources
3 fully planned lessons (including starter questions and main work tasks) covering the AS Chemistry chapter on Redox Reactions; Lesson 1: Oxidation States Lesson 2: Half Equations Lesson 3: Forming Redox Equations By the end of lesson 1 students will: Recall the rules for oxidation states of uncombined elements and elements in compounds Determine the oxidation states of elements in a redox reaction Identify what substance has been reduced or oxidised in a redox reaction By the end of lesson 2 students will: Understand what a half equation is Explain what a redox equation is Construct half equations from redox equations By the end of lesson 3 students will: Identify what substance has been reduced or oxidised in a redox reaction Construct balanced half equations by adding H+ and H2O Construct full ionic redox equations from half equations Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR A Level Chemistry Specification Checklist
TeachScienceBeyondTeachScienceBeyond

OCR A Level Chemistry Specification Checklist

(0)
Student friendly personalised learning checklist for OCR A level Chemistry (H432) This resource includes key specification statements for papers 1-3 This resource is one Excel document with tabs for: Module 2: Foundations in Chemistry Module 3: Periodic Table and Energy Module 4: Core Organic Chemistry Module 5: Physical Chemistry and Transition Elements Module 6: Organic Chemistry and Analysis The exam paper number linked to each topic can be found in the left hand corner of each checklist to aid student exam revision.
Water of Crystallisation (Hydrated Salts)
TeachScienceBeyondTeachScienceBeyond

Water of Crystallisation (Hydrated Salts)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on Water of Crystallisation (Formula of Hydrated Salts) By the end of the lesson students should be able to: To know the terms anhydrous, hydrated and water of crystallisation To calculate the formula of a hydrated salt from given percentage composition or mass composition To calculate the formula of a hydrated salt from experimental results Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Complex Ions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions **By the end of this lesson KS5 students should be able to: To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Isomers (AQA)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Isomers (AQA)

(1)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on isomers (structural isomers and stereoisomers). Suitable for the AQA specification By the end of the lesson students should be able to: Know the what structural isomers and stereoisomers are Describe the three different ways in which structural isomers can occur Construct formulae of positional, functional group or chain isomers and stereosiomers of alkenes Students will be able to take rich notes on isomers, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding on isomers by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Directing Groups in Aromatic Compounds
TeachScienceBeyondTeachScienceBeyond

Directing Groups in Aromatic Compounds

(0)
A well structured KS5 Lesson on Directing Groups in Aromatic Compounds. This lesson is a follow up to the lesson on Phenols. This lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Practical Skills in Organic Synthesis (Yr13)
TeachScienceBeyondTeachScienceBeyond

Practical Skills in Organic Synthesis (Yr13)

(0)
A structured KS5 lesson (Yr13) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis II. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Carbon-13 NMR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

Carbon-13 NMR Spectroscopy

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy By the end of this lesson KS5 students should be able to: To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Hess' Law and Enthalpy Cycles
TeachScienceBeyondTeachScienceBeyond

Hess' Law and Enthalpy Cycles

(1)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Hess’ Law and Enthalpy Cycles By the end of this lesson KS5 students should be able to: LO1. To state Hess’ Law LO2. To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law LO3. To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Gibbs Free Energy (Part 1)
TeachScienceBeyondTeachScienceBeyond

Gibbs Free Energy (Part 1)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 1) By the end of this lesson KS5 students should be able: To explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system To recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T To calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Proton NMR Spectroscopy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 2)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 2) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 1) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule 2 Bonus Questions on Combined Techniques are also included in this lesson! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: The Properties of Alkenes
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: The Properties of Alkenes

(0)
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on the properties of alkenes. This lesson is an introduction to the chapter on alkenes. This lesson follows the OCR specification. By the end of the lessons students should be able: 1)To know the general formula of alkenes 2)To explain the shape and bond angle around each carbon atom of a C=C bond 3)To describe how π and σ bonds are formed in alkenes** Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above