Hero image

Exceed Education's Shop

I create resources for mathematics teaching based on the Singapore and Shanghai curriculum models for best practice. I will focus on the core principles of Intelligent Practice, Low-Threshold High-Ceiling tasks, fluency based activities and Problem Solving and Reasoning activities.

I create resources for mathematics teaching based on the Singapore and Shanghai curriculum models for best practice. I will focus on the core principles of Intelligent Practice, Low-Threshold High-Ceiling tasks, fluency based activities and Problem Solving and Reasoning activities.
Daily Fluency - Add & Sub (Sample Set)
UKExceEDUKExceED

Daily Fluency - Add & Sub (Sample Set)

(0)
Do you operate a ‘mastery’ classroom? Do your students take too long to recall addition and subtraction facts, or worse, cannot recall them at all? Look no further than this Daily Fluency with Calculations booklet. This resource has been developed through a proven research-based approach. The sequence of sessions follows a specific sequence which helps children to build upon common techniques of calculation. For example, the first week is as follows: Day 1: Adding 9 Day 2: Subtracting 9 Day 3: Adding 11 Day 4: Subtracting 11 Day 5: A mixture of adding 9, 10 and 11. Each week follows a similar structure, with columns of questions conveniently colour coded to help children recognise how much of the session they manage to complete. Note: This is a free sample set to give you an insight into how the entire fluency pack works. The full Daily Fluency with Calculations booklet can be found here. For best results: Use the PDF file to create an A5 booklet; Teach the main strategy for each session using a whole class approach; Use a 3-minute timer to allow children to complete the page; Allow children to call out their name when they have finished, and tell them their time; Allow children to call out the answers in order afterwards as you mark as a whole class, discussing any difficulties or interesting patterns; Allow children to complete their own tracking charts at the end of each week, and bar chart on the back cover. This gives them a good feedback about how well they are performing, and also gives them ownership over the process. The power of this daily approach is truly remarkable, and will have your children recalling their number facts in no time. Most of our schools reprint this booklet and complete it a second and third time in order to maintain their rapid recall. This can be an important part of creating long term memory of the facts. Also supplied is a full answers booklet for you to check students answers when they call them out.
Daily Fluency - Addition & Subtraction
UKExceEDUKExceED

Daily Fluency - Addition & Subtraction

(0)
Do you operate a ‘mastery’ classroom? Do your students take too long to recall addition and subtraction facts, or worse, cannot recall them at all? Look no further than this Daily Fluency with Calculations booklet. This resource has been developed through a proven research-based approach. The sequence of sessions follows a specific sequence which helps children to build upon common techniques of calculation. For example, the first week is as follows: Day 1: Adding 9 Day 2: Subtracting 9 Day 3: Adding 11 Day 4: Subtracting 11 Day 5: A mixture of adding 9, 10 and 11. Each week follows a similar structure, with columns of questions conveniently colour coded to help children recognise how much of the session they manage to complete. For best results: Use the PDF file to create an A5 booklet; Teach the main strategy for each session using a whole class approach; Use a 3-minute timer to allow children to complete the page; Allow children to call out their name when they have finished, and tell them their time; Allow children to call out the answers in order afterwards as you mark as a whole class, discussing any difficulties or interesting patterns; Allow children to complete their own tracking charts at the end of each week, and bar chart on the back cover. This gives them a good feedback about how well they are performing, and also gives them ownership over the process. The power of this daily approach is truly remarkable, and will have your children recalling their number facts in no time. Most of our schools reprint this booklet and complete it a second and third time in order to maintain their rapid recall. This can be an important part of creating long term memory of the facts. Also supplied is a full answers booklet for you to check students answers when they call them out.
Fluency: Bridging with Tens Frame (Full Pack)
UKExceEDUKExceED

Fluency: Bridging with Tens Frame (Full Pack)

8 Resources
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 19 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 19 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 18 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 18 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 17 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 17 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 16 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 16 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 9 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 9 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 8 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 8 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 7 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 7 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (+ 6 with Tens Frame)
UKExceEDUKExceED

Fluency: Bridging (+ 6 with Tens Frame)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging with Numicon (Full Pack)
UKExceEDUKExceED

Fluency: Bridging with Numicon (Full Pack)

8 Resources
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 19 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 19 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 18 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 18 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 17 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 17 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 16 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 16 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 9 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 9 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 8 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 8 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 7 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 7 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.
Fluency: Bridging (add 6 with Numicon)
UKExceEDUKExceED

Fluency: Bridging (add 6 with Numicon)

(0)
Do you operate a ‘mastery’ classroom? Do you find it difficult to teach bridging method using visual resources? Look no further than the full set of fluency activities designed to allow children to develop the skills of bridging as an addition strategy using Numicon or Tens Frames. The full sets include blank spaces for children to record, an answer pack for demonstrating on the IWB, and an example question to start the teaching. Each set is divided into a specific addition focus (either adding 6, 7, 8, 9, 16, 17, 18, or 19). This activity is ideal for children in Key Stage 1 or 2. How could I use this activity? Our staff have used these fluency packs in two main ways: As a whole class teaching input, using the Example page to show strategy of partitioning the add focus visually, followed by whole class work through of the questions whilst on the Interactive Whiteboard. Individual booklets (printing 4 pages per sheet in the print settings) and allowing children to work through the booklet with at their own pace, or with a teacher or TA). How are the activities useful? In terms of developing real mastery amongst your students, it is important that they can: Answer simple addition problems quickly from memory, or by using calculation strategies rather than counting. This pack allows children to develop a long term memory of addition facts through the visual nature, whilst helping them to calculate through a bridging strategy. Manipulate numbers in different ways so that they can be confident in any addition scenario. This pack enables children to consider the most efficient methods of bridging. How do children develop more efficient methods? Encourage your children to recognise the different ways to manipulate the calculation. As an example, consider 6 + 7: Some children will automatically change this to 7 + 6 because they have been drilled into “put the largest number first”. For true mastery, children must be able to recognise that addition involves the sum of two addends, and therefore it doesn’t matter which one goes first. So, how do we teach this? Ask them to calculate (not count) the answer both ways around. What do they notice? For 6 + 7, we partition 7 into 4 and 3, because 6 + 4 = 10, and this is what we call bridging. For 7 + 6, we partition 6 into 3 and 3, because 7 + 3 = 10. In both examples the sum is still 13, but the partitions we created we different. So, which one is more efficient? The honest answer is, once we are fluent, they are both efficient. But, whilst we are still learning, most children will find it easier to do 6 + (4 + 3) for the simple reason that even numbers bonds to 10 are easier to remember. Your biggest challenge as a teacher using a mastery style, is to get the children to recognise this of their own accord through real reasoning in the classroom. That’s why these resources have been designed to visually show each calculation.