# Moz' Shop

Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!

Home feed

My list

Courses
My Jobs
Job alerts
My CV
Career preferences
Resources
Author dashboard
Settings

Edit account
Log out
Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!

79Uploads

0Views

0Downloads

Teacher of Science since 2012 - specialising in Physics & Biology
Please rate and review so I can improve my resources!

Lesson covering thermal radiation that also recaps other methods of heat transfer. Also examines emitters, absorbers, insulation and vacuum flasks - contains student practice questions. Could also be used for a higher KS3 class
Developing: Recognise that thermal energy transfer by radiation does not require particles.
Securing: Describe the effect of surface colour (black or white) and texture (dull or shiny) on the emission, absorption and reflection of radiation.
Exceeding: Outline experiments to show the properties of good and bad emitters and absorbers.

Lesson taking a deeper look at thermal conduction, could be used for higher KS3 classes. Includes conductors and insulators and examines why conductors are colder to the touch than insulators.
Developing: Draw particle diagrams to display the transfer of heat energy through conduction.
Securing: Assess the different qualities of thermal conductors and insulators.
Exceeding: Explain with reference to sub atomic particles, why metals are the best thermal conductors.

Lesson introducing and explaining pressure calculating in solids and fluids - including practice questions for students.
Ideal for AQA GCSE (9-1) P3, Cambridge iGCSE P3 and more.
Developing: Relate pressure to force and area.
Secure: Calculate pressure force and area using the equation P=F/A
Exceeding: Calculate pressure in liquids by using the equation P = pgh

Lesson designed to build upon prior knowledge of current and magnetic fields - includes practice questions for students.
Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more
Developing: State that a current in a wire produces a magnetic field
Secure: Describe and sketch the magnetic field lines around a single wire/ loop
Exceeding: Explain the magnetic field pattern around a solenoid using the right hand grip rule

Lesson building upon the basics of electronics. Introducing and explaining the use of transistors in circuits.
Ideal for Cambridge iGCSE P10 and more
Developing: Draw and label the transistor circuit symbol.
Securing: Recognise the transistor role as that of a processor in an electrical system.
Exceeding: Show understanding of circuits operating as light-sensitive switches and temperature operated alarms

Lesson exploring the heating of gases including how volume changes when maintaining pressure - includes card sort task and other student tasks.
Developing: Identify the key difference between the behaviour of gases when heated compared to the behaviour of liquids and solids when heated.
Securing: Draw particle diagrams to model the increase in pressure when the temperature of a gas increases.
Exceeding: Assess the relative expansion rates of solids, liquids and gases and relate the differences in expansion to the strength of the forces between particles.

Lesson to build on students understanding of refraction, detailing how to calculate the refractive index of a material - includes practicer questions for students.
Ideal for Cambridge iGCSE P7 and more
Developing: Recall and use the equation n= Sin(i)/Sin®
Securing: Use angles of incidence and refraction to calculate the refractive index of optical media.
Exceeding: Apply knowledge to determine the critical angle of different optical media.

Lesson designed to build upon prior knowledge of magnetic fields and electric current. Covers the motor effect and how to increase the strength of an electric motor - includes practice questions for students.
Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more
Developing: State that a current-carrying coil in a magnetic field experiences a turning effect and that the effect is increased by: – increasing the number of turns on the coil – increasing the current – increasing the strength of the magnetic field.
Secure: Relate this turning effect to the action of an electric motor including the action of a split-ring commutator.
Exceeding: Apply Fleming’s left-hand rule to determine the direction of rotation of a current carrying coil in a a magnetic field.

Lesson introducing the Law of Inertia and F=ma - contains practice questions and student tasks.
Developing: Recall 6 common forces.
Secure: Recognise that, when there is no resultant force, forces are balanced and a body either remains at rest or continues at constant speed.
Exceeding: Apply the relation between force, mass and acceleration F=ma.

Lesson used to deepen students understanding of sound. Explores various ways of measuring the speed of sound and calculating echoes - includes practice questions for students.
Ideal for AQA GCSE (9-1) P6, Cambridge iGCSE P6 and more.
Developing: Recall the typical values for the speed of sound in gases, liquids and solids.
Securing: Describe how the reflection of sound may produce an echo.
Exceeding: Describe an experiment to determine the speed of sound in air.

Presentation to help students get to grips with calculating speed and acceleration, also the difference between speed and velocity - contains practice questions.
Developing: Determine the speed of objects using the following formula: Speed = Distance/Time
Securing: Recall the definitions of speed, velocity and acceleration.
Exceeding: Calculate the average acceleration.

Lesson introducing the different types of energy and the concept of conservation of energy. Includes practice question and treasure hunt activity and pictionary cards. Suitable for higher KS3 class also.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more.
Developing: To understand key ideas and key terms relating to Energy.
Secure: To describe the 9 forms of Energy.
Exceeding: To describe and explain how Energy is transferred from one form to another.

Lesson exploring the states of matter and kinetic theory, touching on internal energy - includes student video task.
Developing: State the properties of solids, liquids and gases.
Securing: Relate the properties of solids, liquids and gases to the forces and distances between molecules.
Exceeding: Describe kinetic theory and state evidence that supports kinetic theory.

Lesson covering convection currents with animations to aid explanations. Contains real life examples e.g. fridges and linking to plate tectonics - contains practice questions for students. Suitable for higher level KS3 students.
Developing: Recognise convection as a process that transfers energy.
Securing: Use models to describe convection currents in real world situations.
Exceeding: Explain with reference to thermal expansion and density how convection transfers energy from one location to another.

Lesson introducing and explaining efficiency and how to calculate it. Also shows how to draw Sankey diagrams. Suitable for higher KS3 classes also - includes practice exam question.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more
Developing: To understand not all energy is transferred from one form directly to another
Secure: To be able to calculate efficiency from given data.
Exceeding: To be able to create a Sankey diagram from given data and calculate efficiency from it.

Set of lessons designed to introduce and explain how we convert different energy stores into electricity - links to efficiency. Suitable for higher KS3 classes also. Conatains many real life examples.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more.
Lesson 1/2
Developing: Recall that electrical energy comes from generators in power stations.
Securing: Complete a flow diagram demonstrating the energy transfers that take place in a power station.
Exceeding: Produce accurate Sankey diagrams that describe the energy efficiency of power stations.
Lesson 2/2
Developing: Recall the three types of fossil fuel.
Securing: Relate the different methods of electricity generation to different types of pollution.
Exceeding: Analyse the advantages and disadvantages of using renewable energy sources.

Lesson covering the evolution of our understanding of the atom. Looks at each model in chronological order: Democritus ‘Atomos’; JJ Thompson ‘Plumb Pudding’; Ernest Rutherford Gold foil experiment - includes practice questions for students
Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more
Developing: Recall the names and locations of the three sub-atomic particles found inside every atom.
Securing: Describe the major differences between J.J. Thomson’s plum pudding model and Rutherford’s nuclear model of the atom.
Exceeding: Explain how alpha-radiation may be used to determine the distribution of mas and positive charge inside atoms.

Lesson building on knowledge of transformers and magnetic fields. Includes practice questions for students.
Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more.
Developing: Recall and use the equation Ip Vp = Is Vs (for 100% efficiency)
Secure: Describe the use of the transformer in high-voltage transmission of electricity.
Exceeding: Explain why power losses in cables are lower when the voltage is high.

Lesson exploring the difference between heat and temperature, touches on different types of thermometer - includes practice questions for students.
Developing: Recall that we use both the Celsius and Kelvin scale to measure temperature.
Securing: Describe the random motion of particles in terms of random molecular bombardment.
Exceeding: State and explain the difference between heat and temperature.

Lesson to introduce calculating weight using W=mg - contains practice questions. Suitable for higher KS3 also.
Developing: State that weight is a gravitational force.
Secure: Recall and use the equation W = mg.
Exceeding: Describe, and use the concept of, weight as the effect of a gravitational field on a mass.