Hero image

Moz' Shop

Average Rating4.71
(based on 11 reviews)

Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!

79Uploads

26k+Views

29k+Downloads

Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!
Friction and lubrication
cmorrison78515cmorrison78515

Friction and lubrication

(0)
Presentation to help students get to grips with friction and the need for lubricants - includes practice questions. Suitable for higher KS3 students also. Developing: Recall the definition friction and what direction is acts in. Secure: Explain how friction works and what causes it. Exceeding: Explore ways of reducing Friction.
States of matter & moving particles - including Brownian motion
cmorrison78515cmorrison78515

States of matter & moving particles - including Brownian motion

(0)
Lesson exploring the states of matter and kinetic theory, touching on internal energy - includes student video task. Developing: State the properties of solids, liquids and gases. Securing: Relate the properties of solids, liquids and gases to the forces and distances between molecules. Exceeding: Describe kinetic theory and state evidence that supports kinetic theory.
Electronic switching - Full lesson
cmorrison78515cmorrison78515

Electronic switching - Full lesson

(0)
Lesson building upon the basics of electronics. Introducing and explaining the use of transistors in circuits. Ideal for Cambridge iGCSE P10 and more Developing: Draw and label the transistor circuit symbol. Securing: Recognise the transistor role as that of a processor in an electrical system. Exceeding: Show understanding of circuits operating as light-sensitive switches and temperature operated alarms
Logic Gates - Bumper Lesson Pack
cmorrison78515cmorrison78515

Logic Gates - Bumper Lesson Pack

(0)
Lessons introducing and explaining the various logic gates with various work sheets. Ideal for Cambridge iGCSE P10 and more Lesson 1/2 Developing: Define what is meant by the terms analogue and digital in terms of continuous variation and high/ low states. Securing: Describe the action of AND, OR, NOT logic gates. Exceeding: Design simple circuits using AND, OR, NOT logic gates. Lesson 2/2 Developing: Define what is meant by the terms analogue and digital in terms of continuous variation and high/ low states. Securing: Describe the action of AND, OR, NOT logic gates. Exceeding: Design simple circuits using AND, OR, NOT logic gates.
Electric current - Full Lesson
cmorrison78515cmorrison78515

Electric current - Full Lesson

(0)
Lesson designed to build upon students prior knowledge of electric charge. Covers the equation linking charge, current and time; introduces circuit symbols; building simple circuits; difference between conventional current and electron flow - includes practice questions for students. Ideal for AQA GCSE (9-1) P2, Cambridge iGCSE P8 and more Developing: Recall current is a rate of flow of charge and recall and use the equation I = Q / t. Secure: Use and describe the use of an ammeter, both analogue and digital. Exceeding: Distinguish between the direction of flow of electrons and conventional current.
Series and Parallel Circuits - Bumper lesson pack
cmorrison78515cmorrison78515

Series and Parallel Circuits - Bumper lesson pack

(0)
Lessons designed to build on knowledge of current, voltage and resistance. Recaps and explains the rules for current and voltage in series and parallel circuits. Introduces calculating resistance of series and parallel circuits - includes practice questions for students. Ideal for AQA GCSE (9-1) P2, Cambridge iGCSE P8 and more Lesson 1/2 Developing: Understand that the current at every point in a series circuit is the same. Secure: State the advantages of connecting lamps in parallel in a lighting circuit. Exceeding: State that, for a parallel circuit, the current from the source is larger than the current in each branch. Lesson 2/2 Developing: Calculate total resistance in a series circuit. Securing: Apply formulas to work out the total resistance in a parallel circuit. Exceeding: Calculate the current in all branches in a parallel circuit.
Electromagnetic Induction -  Bumper lesson pack
cmorrison78515cmorrison78515

Electromagnetic Induction - Bumper lesson pack

(0)
Lessons designed to build upon students knowledge of current and magnetic fields. Includes methods of increasing the rate of induction and Flemming’s right hand rule - contains practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Lesson 1/2 Developing: Show understanding that a conductor moving across a magnetic field or a changing magnetic field linking with a conductor can induce an e.m.f. in the conductor. Secure: State the factors affecting the size of an induced e.m.f. Exceeding: Describe an experiment to demonstrate electromagnetic induction. Lesson 2/2 Developing: Recall that an induced current always flows in a direction such that it opposes the change which produced it. Secure: Describe an experiment to demonstrate Lenz’s law. Exceeding: Predict the location of north and south poles of a solenoid’s magnetic field when a bar magnet approaches and recedes from the solenoid.
Electronics Essentials - Full Lesson
cmorrison78515cmorrison78515

Electronics Essentials - Full Lesson

(0)
Lesson designed to introduce students to electronics and circuit construction. Ideal for Cambridge iGCSE P10 and more Developing: Recall the three parts of all electronic systems. Securing: Summarise the differences between analogue and digital signals. Exceeding: Explain how alternating current is converted in to direct current
Nuclear Radiation - Bumper lesson pack
cmorrison78515cmorrison78515

Nuclear Radiation - Bumper lesson pack

(0)
Lessons designed to introduce and explain all areas on nuclear radiation, including their uses; background radiation; penetration and ionization levels - contains practice questions for students. Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Lesson 1/2 Developing: Recall the main three types of nuclear radiation. Securing: Recognise the different properties of the main three types of nuclear radiation. Exceeding: Demonstrate knowledge of the influence of electric and magnetic fields on nuclear radiation through diagrams. Lesson 2/2 Developing: Demonstrate understanding of back ground radiation. Securing: Describe a method that can be used to detect alpha, beta and gamma nuclear radiation. Exceeding: Apply conceptual knowledge of back ground radiation to count rate problems.
Electric Fields - Point charge, parallel plates & curves
cmorrison78515cmorrison78515

Electric Fields - Point charge, parallel plates & curves

(0)
Lesson designed to build on students knowledge of charge, looking at drawing field lines of test charges around various charged objects - includes practice questions for students. Ideal for AQA GCSE (9-1) P2, Cambridge iGCSE P8 and more. Developing: State that electric charges have an electric field around them. Secure: Describe an electric field as a region in which an electric charge experiences a force. Exceeding: Apply knowledge of electric fields to accurately draw the electric field around a point charge, a charged conducting sphere and the field between two parallel plates.
Difference between heat and temperature
cmorrison78515cmorrison78515

Difference between heat and temperature

(0)
Lesson exploring the difference between heat and temperature, touches on different types of thermometer - includes practice questions for students. Developing: Recall that we use both the Celsius and Kelvin scale to measure temperature. Securing: Describe the random motion of particles in terms of random molecular bombardment. Exceeding: State and explain the difference between heat and temperature.
Calculating weight - GCSE/iGCSE
cmorrison78515cmorrison78515

Calculating weight - GCSE/iGCSE

(0)
Lesson to introduce calculating weight using W=mg - contains practice questions. Suitable for higher KS3 also. Developing: State that weight is a gravitational force. Secure: Recall and use the equation W = mg. Exceeding: Describe, and use the concept of, weight as the effect of a gravitational field on a mass.
Heating Gases
cmorrison78515cmorrison78515

Heating Gases

(0)
Lesson exploring the heating of gases including how volume changes when maintaining pressure - includes card sort task and other student tasks. Developing: Identify the key difference between the behaviour of gases when heated compared to the behaviour of liquids and solids when heated. Securing: Draw particle diagrams to model the increase in pressure when the temperature of a gas increases. Exceeding: Assess the relative expansion rates of solids, liquids and gases and relate the differences in expansion to the strength of the forces between particles.
Light Rays & Waves Lesson
cmorrison78515cmorrison78515

Light Rays & Waves Lesson

(0)
Lesson building on students knowledge of waves, applying wave effects like reflection to light. Contains explanation of luminous and non-luminous objects with examples - includes practice questions for students. Ideal for AQA GCSE (9-1) P6, Cambridge iGCSE P7 and more. Developing: Describe how light waves are reflected at surfaces with different textures. Securing: Recall the six features of light. Exceeding: Explain why the light emitted by a laser is monochromatic.
Measurements and Units iGCSE/GCSE
cmorrison78515cmorrison78515

Measurements and Units iGCSE/GCSE

(0)
Presentation to help students get to grips with prefixes and scientific notation - contains practice questions - also suitable for higher KS3 classes. Developing: Recall the 8 basic prefixes. Secure: Most students will be able to use the 8 basic prefixes in the keywords and explain what they mean with an example. Exceeding: Apply scientific notation and convert fractions/decimals into standard form.
Motion Graphs - Distance-Time and Speed-Time
cmorrison78515cmorrison78515

Motion Graphs - Distance-Time and Speed-Time

(0)
Presentation to help students get to grips with motion graphs - contains practice questions and flash animations. Developing: Recognise from the shape of a speed-time graph when a body is – at rest / moving with constant speed / accelerating / decelerating. Secure: Calculate speed from the gradient of a speed-time graph. Exceeding: Demonstrate understanding that acceleration and deceleration are related to changing speed.