Hero image

Science with Mingels

Average Rating4.40
(based on 5 reviews)

I have been teaching 9th grade Introductory Physics for 6 years. Along the way, I've taught some Chemistry, Biology, Engineering, Integrated and Environmental Science.

51Uploads

91k+Views

2k+Downloads

I have been teaching 9th grade Introductory Physics for 6 years. Along the way, I've taught some Chemistry, Biology, Engineering, Integrated and Environmental Science.
Physics 1.2 Atom Basics and Inside a Magnet Powerpoint and Guided Notes
mmingelsmmingels

Physics 1.2 Atom Basics and Inside a Magnet Powerpoint and Guided Notes

(0)
PowerPoint I use to teach students about the parts of an atom and what makes something magnetic (and how it can also be de-magnetized). Includes a short activity using the PhET simulation "Build an Atom" (PowerPoint includes a hyperlink to the sim) that we did together as a class. I like to have a student come up to the board to run it while I fill in their note paper and have the class direct them what to do and they come up with the answers to the questions together. If you have a 1-1 classroom, each student could do the activity individually and then discuss what they found as a class. PowerPoint includes Activator/Bell Ringer questions and daily objectives. PowerPoint is 12 Slides. Guided notes with the activity is 3 pages long and a complete answer key is included. MA State Framework this lesson provides a basis of understanding for: 5.6 Recognize that moving electric charges produce magnetic forces and moving magnets produce electric forces. Recognize that the interplay of electric and magnetic forces is the basis for electric motors, generators, and other technologies.
Electricity and Magnetism Study Guide
mmingelsmmingels

Electricity and Magnetism Study Guide

(0)
Study guide for Electricity and Magnetism Unit Review or Final Exam practice. Includes FULL answer key! Study guide is 6 pages and answer key is 6 pages. Standards addressed: 5. Electromagnetism Central Concept: Stationary and moving charged particles result in the phenomena known as electricity and magnetism. 5.1 Recognize that an electric charge tends to be static on insulators and can move on and in conductors. Explain that energy can produce a separation of charges. 5.2 Develop qualitative and quantitative understandings of current, voltage, resistance, and the connections among them (Ohm’s law). 5.3 Analyze simple arrangements of electrical components in both series and parallel circuits. Recognize symbols and understand the functions of common circuit elements (battery, connecting wire, switch, fuse, resistance) in a schematic diagram. 5.4 Describe conceptually the attractive or repulsive forces between objects relative to their charges and the distance between them (Coulomb’s law). 5.5 Explain how electric current is a flow of charge caused by a potential difference (voltage), and how power is equal to current multiplied by voltage. 5.6 Recognize that moving electric charges produce magnetic forces and moving magnets produce electric forces. Recognize that the interplay of electric and magnetic forces is the basis for electric motors, generators, and other technologies.
Waves: Sound and Light Study Guide
mmingelsmmingels

Waves: Sound and Light Study Guide

(0)
Study guide for waves unit or final exam including properties of waves, EM spectrum, and sound waves. Accompanies the Prentice Hall Science Explorer: Sound and Light text. Standards addressed: 4. Waves Central Concept: Waves carry energy from place to place without the transfer of matter. 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period) and explain the relationships among them. Recognize examples of simple harmonic motion. 4.2 Distinguish between mechanical and electromagnetic waves. 4.3 Distinguish between the two types of mechanical waves, transverse and longitudinal. 4.4 Describe qualitatively the basic principles of reflection and refraction of waves. 4.5 Recognize that mechanical waves generally move faster through a solid than through a liquid and faster through a liquid than through a gas. 4.6 Describe the apparent change in frequency of waves due to the motion of a source or a receiver (the Doppler effect). 6. Electromagnetic Radiation Central Concept: Oscillating electric or magnetic fields can generate electromagnetic waves over a wide spectrum. 6.1 Recognize that electromagnetic waves are transverse waves and travel at the speed of light through a vacuum. 6.2 Describe the electromagnetic spectrum in terms of frequency and wavelength, and identify the locations of radio waves, microwaves, infrared radiation, visible light (red, orange, yellow, green, blue, indigo, and violet), ultraviolet rays, x-rays, and gamma rays on the spectrum.
Motion, Forces, and Energy Study Guide
mmingelsmmingels

Motion, Forces, and Energy Study Guide

(0)
Study guide for Motion, Forces, and Energy including conservation of energy and heat. Includes full answer key! Study guide is 6 pages, answer key is 9. Standards Covered: 1. Motion and Forces Central Concept: Newton’s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast vector quantities (e.g., displacement, velocity, acceleration force, linear momentum) and scalar quantities (e.g., distance, speed, energy, mass, work). 1.2 Distinguish between displacement, distance, velocity, speed, and acceleration. Solve problems involving displacement, distance, velocity, speed, and constant acceleration. 1.3 Create and interpret graphs of 1-dimensional motion, such as position vs. time, distance vs. time, speed vs. time, velocity vs. time, and acceleration vs. time where acceleration is constant. 1.4 Interpret and apply Newton’s three laws of motion. 1.5 Use a free-body force diagram to show forces acting on a system consisting of a pair of interacting objects. For a diagram with only co-linear forces, determine the net force acting on a system and between the objects. 1.6 Distinguish qualitatively between static and kinetic friction, and describe their effects on the motion of objects. 1.7 Describe Newton’s law of universal gravitation in terms of the attraction between two objects, their masses, and the distance between them. 1.8 Describe conceptually the forces involved in circular motion. 2. Conservation of Energy and Momentum Central Concept: The laws of conservation of energy and momentum provide alternate approaches to predict and describe the movement of objects. 2.1 Interpret and provide examples that illustrate the law of conservation of energy. 2.2 Interpret and provide examples of how energy can be converted from gravitational potential energy to kinetic energy and vice versa. 2.3 Describe both qualitatively and quantitatively how work can be expressed as a change in mechanical energy. 2.4 Describe both qualitatively and quantitatively the concept of power as work done per unit time. 2.5 Provide and interpret examples showing that linear momentum is the product of mass and velocity, and is always conserved (law of conservation of momentum). Calculate the momentum of an object. 3. Heat and Heat Transfer Central Concept: Heat is energy that is transferred by the processes of convection, conduction, and radiation between objects or regions that are at different temperatures. 3.1 Explain how heat energy is transferred by convection, conduction, and radiation. 3.2 Explain how heat energy will move from a higher temperature to a lower temperature until equilibrium is reached. 3.3 Describe the relationship between average molecular kinetic energy and temperature. Recognize that energy is
6 Jeopardy Templates
mmingelsmmingels

6 Jeopardy Templates

(0)
6 Fully Editable PowerPoint Templates that can be used to review any topic!! All 6 have the same basic design for continuity between units, but vary in number of categories (4, 5, and 6) so you can easily suit the number of questions to your specific topic and student audience. There are also 2 versions of each, one with the questions and answers on the same slide (answers appear with a click) and one where they are on separate slides. All slides are hyperlinked to the gameboard slide for easy transitions! Slides are labeled C1, C2 etc for each category and with point values to help you keep your place. Just type over placeholder text and you're good to go. Add pictures and change the background for further individualization. If you need any assistance, don't hesitate to contact me!
Physics Final Exam Study Guide Review Worksheet
mmingelsmmingels

Physics Final Exam Study Guide Review Worksheet

(0)
Physics Final exam review worksheet with sections on Motion, Forces, Energy, Heat, Electricity, Magnetism, and Waves. 11 Pages Total with a table to review units and scalars/vectors at the end. Will require multiple days in class to complete. INCLUDES FULL ANSWER KEY!!!
Big Motion and Forces Review Foldable for Interactive Notebooks or Binder
mmingelsmmingels

Big Motion and Forces Review Foldable for Interactive Notebooks or Binder

(0)
Motion and Forces review foldable for interactive notebooks or binders. Print double sided so it includes 5 pages of information (or print single sided to hang on the wall)! There is also a mini-book version included for a different approach to the material. Reviews Scalars, Vectors, Distance, Displacement, Speed, Velocity, Acceleration, Force, Newton's Laws, Projectiles, and Gravity! Great for end of unit, midterm, final, or standardized test prep! No more boring study guides! Fully editable template for easy adjustment to fit your individual needs as well as PDF format. Full answer key included! Teaching duration varies by use and student ability. MA State Frameworks: 1. Motion and Forces Central Concept: Newton’s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast vector quantities (e.g., displacement, velocity, acceleration force, linear momentum) and scalar quantities (e.g., distance, speed, energy, mass, work). 1.2 Distinguish between displacement, distance, velocity, speed, and acceleration. Solve problems involving displacement, distance, velocity, speed, and constant acceleration. 1.3 Create and interpret graphs of 1-dimensional motion, such as position vs. time, distance vs. time, speed vs. time, velocity vs. time, and acceleration vs. time where acceleration is constant. 1.4 Interpret and apply Newton’s three laws of motion. 1.5 Use a free-body force diagram to show forces acting on a system consisting of a pair of interacting objects. For a diagram with only co-linear forces, determine the net force acting on a system and between the objects. 1.6 Distinguish qualitatively between static and kinetic friction, and describe their effects on the motion of objects. 1.7 Describe Newton’s law of universal gravitation in terms of the attraction between two objects, their masses, and the distance between them. 1.8 Describe conceptually the forces involved in circular motion. Total Pages15Answer KeyIncluded
Bundled Physics Study Guides
mmingelsmmingels

Bundled Physics Study Guides

(0)
SAVE A BUNDLE!!! Buy them together! 4 Study guides for use as end of unit or end of year review including motion, forces, energy, heat, electricity, magnetism, and waves. 28 pages of questions (Some questions repeat between the individual study guides and the combined guide). Answer keys included for all!! Together they cover all of the introductory physics MA state standards.