Hero image

454Uploads

138k+Views

61k+Downloads

GCSE OCR Physics 9-1 Paper 2 Revision Booklets
srshaw89srshaw89

GCSE OCR Physics 9-1 Paper 2 Revision Booklets

(0)
OCR GCSE Physics Paper 2 for higher tier (triple and combined) are covered with individual revision booklets. Each booklet has: Link to specification number Denotes if it is higher or combined material Equations to recall and apply for that section Equations to apply for that section Key Points Exam questions Mark Schemes for each question Triple Booklets: P5.1 Wave Beahviour and Wave Velocity P5.2 Electromagnetic Waves P5.3 Wave Interactions P6.1 Radioactive Emissions P6.2 Uses and Hazards - Fusion and Fission P7 Energy P8.1 Physics on the move P8.2 Powering Earth P8.3 Beyond Earth Combined Booklets: P4.1 Wave Beahviour and Wave Velocity P4.2 Electromagnetic Waves P4.3 Radioactice Emissions P6 Energy P6.2 Physics on the move P6.3 Powering Eaerth
OCR A level Physics: Uses of capacitors
srshaw89srshaw89

OCR A level Physics: Uses of capacitors

(0)
OCR A level Physics: 21.5 Charging Capacitors Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Calculating power output from a circuit containing a capacitor A rectifier circuit - changing an alternating input to a smooth output
OCR A level Physics:  Electric Fields
srshaw89srshaw89

OCR A level Physics: Electric Fields

(0)
OCR A level Physics: 22.1 Electric Fields Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Electric field line pattern from point charges, uniformly charged objects, and capacitors. Rules for electric field lines Interacting field lines for attraction and repulsion Detecting electric fields with a charged gold leaf Definition of electric field strength Explaining that electric field strength is a vector with magnitude and direction Apply the equation for electric field strength
OCR A level Physics: Coulomb’s Law
srshaw89srshaw89

OCR A level Physics: Coulomb’s Law

(0)
OCR A level Physics: 22.2 Coulomb’s Law Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Electric force related to the product of charge and square of the separation The constant of proportionality 𝑘 Permittivity of free space Experiment for investigating Coulomb’s Law Electric Field Strength and Coulomb’s Law
OCR A level Physics: Charged particles in uniformed electric fields
srshaw89srshaw89

OCR A level Physics: Charged particles in uniformed electric fields

(0)
OCR A level Physics: 22.4 Charged particles in uniformed electric fields Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Equations for constant acceleration Maximum kinetic energy of a charged particle in a uniformed field Sketching trajectories for charged particles in uniformed fields Calculating velocities for horizontal and vertical components
OCR A level Physics: Uniformed electric fields & capacitance
srshaw89srshaw89

OCR A level Physics: Uniformed electric fields & capacitance

(0)
OCR A level Physics: 22.3 Uniformed electric fields & capacitance Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Liquid crystal displays (LCDs) Electric field between two charged parallel plates Deriving an equation for electric field strength of a parallel plate capacitor. Accelerating charged particles in a uniformed electric field Capacitance of a parallel plate capacitor with an insulating (dielectric) material - relative permittivity Millikan’s experiment
OCR A level Physics: Electric Potential and Energy
srshaw89srshaw89

OCR A level Physics: Electric Potential and Energy

(0)
OCR A level Physics: 22.5 Electric Potential and Energy Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Definition of electric potential energy Definition of electric potential. Definition of electric potential difference. Using a force-distance graph to determine electric potential energy Using electron-volts and joules in calculations Capacitance of an isolated charged sphere
OCR A level Physics: Magnetic Fields
srshaw89srshaw89

OCR A level Physics: Magnetic Fields

(0)
OCR A level Physics: 23.1 Magnetic Fields Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Attraction and repulsion of magnets Rules for magnetic field lines The magnetic field of Earth Applying the right-hand cork screw rule How to create uniformed magnetic fields Solenoids
OCR A level Physics: Understanding Magnetic Fields
srshaw89srshaw89

OCR A level Physics: Understanding Magnetic Fields

(0)
OCR A level Physics: 23.2 Understanding Magnetic Fields Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Fleming’s left hand rule Determining the direction of force on a current carrying conductor Calculating the magnitude of force on a current carrying conductor Angles between the magnetic field and current carrying conductor An experiment to determine the magnetic flux density of a field.
OCR A level Physics: Charged Particles in Magnetic Fields
srshaw89srshaw89

OCR A level Physics: Charged Particles in Magnetic Fields

(0)
OCR A level Physics: 23.3 Charged Particles in Magnetic Fields Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Apply Fleming’s left-hand rule to charged particles Deriving an equation for the magnetic force experienced by a single charged particle (F = BQv) Charged particles describing (moving) in circular paths in magnetic fields. The velocity selector. The Hall probe and Hall voltage.
OCR A level Physics: Electromagnetic Induction
srshaw89srshaw89

OCR A level Physics: Electromagnetic Induction

(0)
OCR A level Physics: 23.4 Electromagnetic Induction Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Electromagnetic induction produces an induced e.m.f Conditions to produce electromagnetic induction How to increase electromagnetic induction Magnetic flux density, magnetic flux, and magnetic flux linkage Units of weber (Wb)
OCR A level Physics: Transformers
srshaw89srshaw89

OCR A level Physics: Transformers

(0)
OCR A level Physics: 23.6 Transformers Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Structure of transformers Step-up and step-down transformers The turn-ratio equation The ideal transformer equation Why transformers are used in the National Grid
OCR A level Physics: Magnetic Fields
srshaw89srshaw89

OCR A level Physics: Magnetic Fields

6 Resources
OCR A level Physics: Chapter 23 Magnetic Fields is apart of the Module 6: Particle and Medical Physics All presentations come with worked examples, solutions and homeworks. 23.1 Magnetic fields 23.2 Understanding magnetic fields 23.3 Charged particles in magnetic fields 23.4 Electromagnetic induction 23.5 Faraday’s law and Lenz’s law 23.6 Transformers Attraction and repulsion of magnets Rules for magnetic field lines The magnetic field of Earth Applying the right-hand cork screw rule How to create uniformed magnetic fields Solenoids Fleming’s left hand rule Determining the direction of force on a current carrying conductor Calculating the magnitude of force on a current carrying conductor Angles between the magnetic field and current carrying conductor An experiment to determine the magnetic flux density of a field. Apply Fleming’s left-hand rule to charged particles Deriving an equation for the magnetic force experienced by a single charged particle (F = BQv) Charged particles describing (moving) in circular paths in magnetic fields. The velocity selector. The Hall probe and Hall voltage. Electromagnetic induction produces an induced e.m.f Conditions to produce electromagnetic induction How to increase electromagnetic induction Magnetic flux density, magnetic flux, and magnetic flux linkage Units of weber (Wb) Magnetic flux density and magnetic flux linkage Faraday’s Law Lenz’s Law Alternators and induced e.m.f. Graphs of flux linkage and induced e.m.f. Structure of transformers Step-up and step-down transformers The turn-ratio equation The ideal transformer equation Why transformers are used in the National Grid
OCR A level Physics: Faraday's Law and Lenz's Law
srshaw89srshaw89

OCR A level Physics: Faraday's Law and Lenz's Law

(0)
OCR A level Physics: 23.5 Faraday’s Law and Lenz’s Law Module 6 Particles and Medical Physics This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Magnetic flux density and magnetic flux linkage Faraday’s Law Lenz’s Law Alternators and induced e.m.f. Graphs of flux linkage and induced e.m.f.