Over 150 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

Over 150 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

A structured KS5 lesson including starter activity and AfL work tasks on Storage and Fuel Cells
**By the end of this lesson KS5 students should be able to:
**LO1: To understand the application of the principles of electrode potentials to modern storage cells
**LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage
**LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

A structured KS5 lesson (Part 1 of 2) including starter activity and AfL work tasks and Standard Electrode & Cell Potentials
By the end of this lesson KS5 students should be able to:
**To describe techniques and procedures used for the measurement of :
**i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution
**ii) Ions of the same element in different oxidation states in contact with a Pt electrode
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete

A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Precipitation & Ligand Substitution Reactions
**By the end of this lesson KS5 students should be able to:
**LO1: To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess)
LO2: To construct ionic equations for the precipitation reactions that take place
LO3: To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Standard Electrode & Cell Potentials
By the end of this lesson KS5 students should be able to:
LO1: To use the term standard electrode potential E⦵ including its measurement using a hydrogen electrode
LO2: To calculate a standard cell potential by combining two standard electrode potentials
LO3: To predict the feasibility of electrode potentials to modern storage cells
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and main work task all with answers on Intermolecular Forces (London forces and permanent dipole-dipole interactions)
By the end of this lesson KS5 students should be able to:
Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions
Explain how intermolecular forces are linked to physical properties such as boiling and melting points
Compare the solubility of polar and non-polar molecules in polar and non-polar solvents
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete

3 structured lessons covering topics from AS Chemistry Alcohols from the OCR Specification
Lesson 1: Properties of Alcohols
**LO1: To identify and explain the intermolecular forces that are present in alcohol molecules
LO2: To explain the water solubility of alcohols, their low volatility and their trend in boiling points
LO3: To classify alcohols as primary, secondary or tertiary alcohols
Lesson 2: Oxidation of Alcohols
**LO1: To know that alcohols can undergo combustion reactions in the presence of oxygen
LO2:To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate
LO3:To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids
LO4:To know the products and reaction conditions for the oxidation of secondary alcohols to ketones
Lesson 3: Other Reactions of Alcohols
**LO1To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes
To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes

A structured KS5 lesson including starter activity and modelled practice questions on The Effect of Temperature on the Rate Constant (The Arrhenius Equation).
By the end of this lesson KS5 students should be able to:
Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction
To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT
Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation

Well structured KS5 Lesson on Benzene and its structure. The lesson contains starter activities, discussion questions and mini AfL quizzes and practice questions, all with answers included
By the end of the lesson students should:
To describe the Kekulé model of benzene
To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system
To compare the Kekulé model of benzene and the delocalised model of benzene
4.To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction

2 Full Lesson Bundle on Proton NMR Spectroscopy. suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The number of proton environments in the molecule
ii) The different types of proton environment present from chemical shift values
Lesson 2: Proton NMR Spectroscopy (Part 2)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The different types of proton environment present from chemical shift values
ii) The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
iii) The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
iv) Possible structures for the molecule

7 Full Lesson Bundle + A Bonus Revision Lesson which covers the Kinetics (How Fast?) chapters from the OCR A Level Chemistry Specification (also suitable for the AQA and Edexcel Spec- see Learning Objectives below)
Lesson 1: Order of Reactants
Lesson 2: The Rate Equation
Lesson 3&4 Concentration-Time Graphs
Lesson 5: Initial Rates and Clock Reactions
Lesson 6: The Rate Determining Step
Lesson 7: The Arrhenius Equation
Lesson 8: Revision Lesson
Learning Objectives:
Lesson 1:
LO1: To recall the terms rate of reaction, order, overall order and rate constant
LO2: To describe how orders of reactants affect the rate of a reaction
LO3: To calculate the overall order of a reaction
Lesson 2:
LO1: To determine the order of a reactant from experimental data
LO2: To calculate the rate constant, K, from a rate equation
LO3: To calculate the units of the rate constant
Lesson 3&4:
LO1: To know the techniques and procedures used to investigate reaction rates
LO2: To calculate reaction rates using gradients from concentration-time graphs
LO3: To deduce zero & first order reactants from concentration-time graphs
LO4: To calculate the rate constant of a first order reactant using their half-life
Lesson 5:
LO1: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph
LO2: To understand how rate-concentration graphs are created
LO3: To explain how clock reactions are used to determine initial rates of reactions
Lesson 6:
LO1: To explain and use the term rate determining step
LO2: To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction
LO3: To predict the rate equation that is consistent with the rate determining step
Lesson 7:
LO1: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction
LO2: To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT
LO3: Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation
Lesson 8:
This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13)
Students will be able to complete three challenging question rounds on kinetics covering:
Measuring Reaction Rates
Orders of reactants
Concentration-time graphs
Rate-concentration graphs
Clock Reactions
Initial rates
Arrhenius Equation

A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Chirality
By the end of this lesson KS5 students should be able to:
To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre
To identify chiral centres in a molecule of any organic compound.
To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes

A structured A level Chemistry lesson including starter activity, AfL work tasks and lesson slides with answers on the rate determining step
By the end of this lesson KS5 students should be able to:
To explain and use the term rate determining step
To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction
To predict the rate equation that is consistent with the rate determining step

5 Full Lessons on Energetics in AS Level Chemistry
Lesson 1: Enthalpy and Reactions
Lesson 2: Enthalpy Changes
Lesson 3: Bond Enthalpies
Lesson 4: Calorimetry
Lesson 5: Hess’ Law & Enthalpy Cycles
Learning Objectives:
Lesson 1:
LO1: To explain that some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic
LO2: To construct enthalpy profile diagrams to show the difference in the enthalpy of reactants compared with products
LO3: To qualitatively explain the term activation energy, including use of enthalpy profile diagrams
Lesson 2:
LO1: To know what standard conditions are
LO2:To understand the terms enthalpy change of combustion, neutralisation and formation
LO3:To construct balanced symbol equations based on the terms enthalpy change of combustion, neutralisation and formation.
Lesson 3:
LO1: To explain the term average bond enthalpy
LO2:To explain exothermic and endothermic reactions in terms of enthalpy changes associated with the breaking and making of chemical bonds
LO3:To apply average bond enthalpies to calculate enthalpy changes and related quantities
Lesson 4:
LO1:To determine enthalpy changes directly from appropriate experimental results, including use of the relationship q=mcΔT
LO2:To know the techniques and procedures used to determine enthalpy changes directly using a coffee cup calorimeter
LO3:To know the techniques and procedures used to determine enthalpy changes indirectly using a copper calorimeter
Lesson 5:
LO1: To state Hess’ Law
LO2: To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law
LO3:To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law

A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations
**By the end of this lesson KS5 students should be able to:
**LO1: To understand what a redox titration is.
LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4-
LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

3 structured lessons covering topics from AS Chemistry Alkanes from the OCR Specification
Lesson 1: Properties of Alkanes
To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate
Explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion
Describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces
Lesson 2: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes
Lesson 3: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products

A complete lesson including starter activity, AfL activities and main work task on amount of substance in equations. Suitable for AQA GCSE Chemistry and higher tier combined science
The lesson begins with a short starter task (DO NOW) recapping moles
Then by the end of this lesson KS4 students should be able to:
calculate the masses of substances in a balanced symbol equation
calculate the masses of reactants and products from balanced symbol equations
calculate the mass of a given reactant or product.
The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

A structured KS5 lesson (lesson 2 of 2) including starter activity, AfL work tasks and practice questions with answers on Redox Reactions. Suitable for Year 13 OCR A-Level Chemistry
**By the end of this lesson KS5 students should be able to:
LO1: To understand that the overall increase in oxidation number will equal the overall decrease in oxidation number
LO2: To construct balanced half equations and overall redox equations from reactions in acidic conditions
LO3: To construct balanced half equations and overall redox equations from reactions in alkaline conditions (stretch & challenge)
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson

A 9 point checklist that can be used by students to help them construct the perfect line graph in science.
This checklist can also be used by teachers when giving feedback to students on their constructed line graphs

A great revision tool for GCSE and A Level Chemistry students for learning how to construct symbol equations in chemistry . Test students regularly on the list of compounds and ions so they can build their recall on this topic