Hero image

BioInspired's Shop

Average Rating4.93
(based on 54 reviews)

FE Biology teacher sharing resources I have made for my own lessons.

46Uploads

59k+Views

44k+Downloads

FE Biology teacher sharing resources I have made for my own lessons.
Evolution of the Atmosphere GCSE Chemistry AQA
BioInspiredBioInspired

Evolution of the Atmosphere GCSE Chemistry AQA

(0)
Whole lesson for AQA GCSE Chemistry/Combined Science on the evolution of the atmosphere. Includes a PowerPoint presentation with all the information, starter activity, timeline activity, past exam questions with answers and a plenary activity. You may wish to print the slides for the timeline, which can be completed as a scavenger hunt style activity. 5.9.1 The composition and evolution of the Earth’s atmosphere
AQA Cell Biology - Whole Topic - GCSE Biology
BioInspiredBioInspired

AQA Cell Biology - Whole Topic - GCSE Biology

(7)
Large PowerPoint covering the whole cell biology topic for AQA GCSE Biology/Combined Science. Eukaryotes, prokaryotes, animal, plant and bacterial cells, cell specialisation, microscopes, mitosis and the cell cycle, stem cell, diffusion, osmosis and active transport.
PCR AQA A Level Biology (polymerase chain reaction)
BioInspiredBioInspired

PCR AQA A Level Biology (polymerase chain reaction)

(0)
Complete lesson covering the polymerase chain reaction (PCR) for AQA A level Biology, unit 8: The principles of the polymerase chain reaction (PCR) as an in vitro method to amplify DNA fragments. Lesson assumes students have already covered in vivo methods (only relevant for final activity). Everything is included in the PowerPoint including all activities and questions to consolidate understanding. No need to print!
Control of Blood Glucose AQA A level Biology
BioInspiredBioInspired

Control of Blood Glucose AQA A level Biology

(1)
Powerpoint presentation for a lesson introducing the hormonal control of blood glucose concentration. Written for AQA A-level biology but easily adapted. Specification points covered: The factors that influence blood glucose concentration. The role of the liver in glycogenesis, glycogenolysis and gluconeogenesis. The action of insulin by: • attaching to receptors on the surfaces of target cells • controlling the uptake of glucose by regulating the inclusion of channel proteins in the surface membranes of target cells • activating enzymes involved in the conversion of glucose to glycogen. The action of glucagon by: • attaching to receptors on the surfaces of target cells • activating enzymes involved in the conversion of glycogen to glucose • activating enzymes involved in the conversion of glycerol and amino acids into glucose. Does not cover the role of adrenaline or the second messenger model.
Microscopy GCSE AQA Biology light & electron microscopes
BioInspiredBioInspired

Microscopy GCSE AQA Biology light & electron microscopes

(3)
PowerPoint presentation on microscopy - using light microscopes and comparing light and electron microscopes for AQA GCSE Biology. Full lesson using the learning loop format. Learning Objectives:  Prepare slides of plant and animal cells and describe the procedure. Correctly use a microscope to observe cells under different magnifications. Describe the differences in magnification and resolution of light and electron microscopes. Explain how electron microscopy has increased understanding of organelles. Calculate the magnification of a light microscope. Carry out calculations using the formula: real size = image size/magnification Rearrange the equation to calculate image size or magnification. Convert values for the units: cm, mm, µm and nm.
AQA GCSE Endocrine System and Control of Blood Glucose Biology
BioInspiredBioInspired

AQA GCSE Endocrine System and Control of Blood Glucose Biology

(1)
PowerPoint for a whole lesson on the endocrine system, control of blood glucose and diabetes - for AQA Trilogy or Biology. 2-3 lessons worth of content. Specification points: Students should be able to describe the principles of hormonal coordination and control by the human endocrine system. The endocrine system is composed of glands which secrete chemicals called hormones directly into the bloodstream. The blood carries the hormone to a target organ where it produces an effect. Compared to the nervous system the effects are slower but act for longer. The pituitary gland in the brain is a ‘master gland’ which secretes several hormones into the blood in response to body conditions. These hormones in turn act on other glands to stimulate other hormones to be released to bring about effects. Students should be able to identify the position of the following on a diagram of the human body: • pituitary gland • pancreas • thyroid • adrenal gland • ovary • testes. Blood glucose concentration is monitored and controlled by the pancreas. If the blood glucose concentration is too high, the pancreas produces the hormone insulin that causes glucose to move from the blood into the cells. In liver and muscle cells excess glucose is converted to glycogen for storage. Students should be able to explain how insulin controls blood glucose (sugar) levels in the body. Type 1 diabetes is a disorder in which the pancreas fails to produce sufficient insulin. It is characterised by uncontrolled high blood glucose levels and is normally treated with insulin injections. In Type 2 diabetes the body cells no longer respond to insulin produced by the pancreas. A carbohydrate controlled diet and an exercise regime are common treatments. Obesity is a risk factor for Type 2 diabetes. Students should be able to compare Type 1 and Type 2 diabetes and explain how they can be treated
Infertility AQA GCSE Biology/trilogy IVF and fertility drugs
BioInspiredBioInspired

Infertility AQA GCSE Biology/trilogy IVF and fertility drugs

(2)
PowerPoint for full lesson on infertility for AQA GCSE Biology/trilogy. Covers fertility drugs, IVF and disadvantages/ethical issues. Covers: Students should be able to explain the use of hormones in modern reproductive technologies to treat infertility. This includes giving FSH and LH in a ‘fertility drug’ to a woman. She may then become pregnant in the normal way. In Vitro Fertilisation (IVF) treatment. • IVF involves giving a mother FSH and LH to stimulate the maturation of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the laboratory. • The fertilised eggs develop into embryos. • At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother’s uterus (womb). Although fertility treatment gives a woman the chance to have a baby of her own: • it is very emotionally and physically stressful • the success rates are not high • it can lead to multiple births which are a risk to both the babies and the mother
Osmosis and Active Transport AQA A Level Biology
BioInspiredBioInspired

Osmosis and Active Transport AQA A Level Biology

(3)
PowerPoint for complete lesson on osmosis and active transport for AQA A Level Biology 3.2.3 Transport across cell membranes • osmosis (explained in terms of water potential) • active transport (involving the role of carrier proteins and the importance of the hydrolysis of ATP) • co-transport (illustrated by the absorption of sodium ions and glucose by cells lining the mammalian ileum).
Structure of Cell Membranes AQA A Level Biology
BioInspiredBioInspired

Structure of Cell Membranes AQA A Level Biology

(1)
A full lesson PowerPoint for AQA A Level Biology on the structure of cell membranes. 3.2.3 Transport across cell membranes The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes, is the same. The arrangement and any movement of phospholipids, proteins, glycoproteins and glycolipids in the fluid-mosaic model of membrane structure. Cholesterol may also be present in cell membranes where it restricts the movement of other molecules making up the membrane.
Simple and Facilitated Diffusion AQA A Level Biology - Transport Across Membranes
BioInspiredBioInspired

Simple and Facilitated Diffusion AQA A Level Biology - Transport Across Membranes

(1)
PowerPoint for a complete lesson on transport across membranes, focussing on simple and facilitated diffusion for AQA A Level Biology. 3.2.3 Transport across cell membranes Movement across membranes occurs by: • simple diffusion (involving limitations imposed by the nature of the phospholipid bilayer) • facilitated diffusion (involving the roles of carrier proteins and channel proteins)
AQA Genetic Diversity and Adaptation (natural selection) A Level Biology
BioInspiredBioInspired

AQA Genetic Diversity and Adaptation (natural selection) A Level Biology

(4)
Complete PowerPoint presentation for a 2 hour lesson on genetic diversity and adaptation for AQA A Level Biology. Includes natural selection, directional selection and stabilising selection. New content slides and accompanying activities in the ‘learning loop’ format. Covers specification points: Genetic diversity as the number of different alleles of genes in a population. Genetic diversity is a factor enabling natural selection to occur. The principles of natural selection in the evolution of populations. Random mutation can result in new alleles of a gene. Many mutations are harmful but, in certain environments, the new allele of a gene might benefit its possessor, leading to increased reproductive success. The advantageous allele is inherited by members of the next generation. As a result, over many generations, the new allele increases in frequency in the population. Directional selection, exemplified by antibiotic resistance in bacteria, and stabilising selection, exemplified by human birth weights. Natural selection results in species that are better adapted to their environment. These adaptations may be anatomical, physiological or behavioural.
Phylogenetic Trees and Clarifying Evolutionary Relationships A Level Biology AQA (Species & Taxa)
BioInspiredBioInspired

Phylogenetic Trees and Clarifying Evolutionary Relationships A Level Biology AQA (Species & Taxa)

(4)
Complete 2 hour lesson on interpreting phylogenetic trees and clarifying evolutionary relationships using DNA sequences, proteins amino acid sequences and immunological techniques. For AQA A level biology 3.4.5 Species and Taxonomy. Uses the ‘learning loop’ lesson format, with plenty of short practise tasks and exam questions. Could be easily adapted to suit a different lesson length.
Light-dependent Reaction Photosynthesis AQA A-level Biology
BioInspiredBioInspired

Light-dependent Reaction Photosynthesis AQA A-level Biology

(2)
Powerpoint presentation on the light-dependent reaction of photosynthesis for AQA A-level Biology. Full lesson (‘learning loop’ style lesson) includes starter, objectives, summary content slides, practise question and mark scheme and evaluation. Covers specification points: The light-dependent reaction in such detail as to show that: • chlorophyll absorbs light, leading to photoionisation of chlorophyll • some of the energy from electrons released during photoionisation is conserved in the production of ATP and reduced NADP • the production of ATP involves electron transfer associated with the transfer of electrons down the electron transfer chain and passage of protons across chloroplast membranes and is catalysed by ATP synthase embedded in these membranes (chemiosomotic theory) • photolysis of water produces protons, electrons and oxygen.
Using a Graticule Step-by-Step Worksheet
BioInspiredBioInspired

Using a Graticule Step-by-Step Worksheet

(0)
A worksheet I created to guide less confident students through calibrating and using a graticule to measure a cell. Suitable for GCSE and A Level Biology. I teach AQA but could be used for other specifications. AT d - use of light microscope at high power and low power, including use of a graticule
Make a giant cell! Cell bio art attack!
BioInspiredBioInspired

Make a giant cell! Cell bio art attack!

(0)
Created as a whole class activity for Biology Week (2018 but could easily be adapted). Students make giant organelles and assemble them into a giant cell. Very open activity, created for a nurture/SEN year 8 class but could be adapted for any KS3 science.