Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1229k+Views

2036k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The brain (AQA GCSE Biology)
GJHeducationGJHeducation

The brain (AQA GCSE Biology)

(1)
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer. The following content is covered in this lesson: The functions of the cerebral cortex, medulla and cerebellum Identification of the regions of the brain on an external and internal diagram The early use of stroke victims to identify functions The key details of the MRI scanning technique The difficulties of diagnosing and treating brain disorders and disease As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
OCR A-Level Biology A REVISION LESSONS
GJHeducationGJHeducation

OCR A-Level Biology A REVISION LESSONS

20 Resources
Each of the 20 revision lessons included in this bundle has been designed to motivate and engage the students whilst they are challenged on their knowledge of the content of the OCR A-Level Biology A specification. The detailed PowerPoints contain a wide range of activities which include exam questions with explained answers, differentiated tasks and quiz competitions that are supported by the accompanying worksheets. The modules covered in this bundle are: Module 2.1.1: Cell structure Module 2.1.2: Biological molecules Module 2.1.3: Nucleotides and nucleic acids Module 2.1.4: Enzymes Module 2.1.5: Biological membranes Module 2.1.6: Cell division, cell diversity and cellular organisation Module 3.1.2: Transport in animals Module 3.1.3: Transport in plants Module 4.1.1: Communicable diseases, disease prevention and the immune system Module 4.2.1: Biodiversity Module 4.2.2: Classification and evolution Module 5.1.2: Excretion as an example of homeostatic control Module 5.1.3: Neuronal communication Module 5.1.4: Hormonal communication Module 5.1.5: Plant and Animal responses Module 5.2.1: Photosynthesis Module 5.2.2: Respiration Module 6.1.1: Cellular control Module 6.1.2: Pattens of inheritance Module 6.1.3: Manipulating genomes Helpful hints are provided throughout the lessons to help the students with exam technique and in structuring their answers. These lessons are suitable for use throughout the course and can be used for revision purposes at the end of a module or in the lead up to mocks or the actual A LEVEL exams
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Stem cells, totipotency & pluripotency (Edexcel SNAB)
GJHeducationGJHeducation

Stem cells, totipotency & pluripotency (Edexcel SNAB)

(0)
This fully-resourced lesson describes the meaning of the terms stem cell, pluripotency and totipotency. The PowerPoint and accompanying worksheets have been designed to cover points 3.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore this lesson also contains discussion periods where the topic is the decisions that the scientific community have to make about the use of stem cells in medical therapies. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter three do not have to be specifically known based on the content of specification point 3.11 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency and pluripotency. These two highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of embryonic stem cells, adult stem cells and also foetal stem cells which allows for a link to chorionic villus sampling from topic 2. There is also a Maths in a Biology context question included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
Ecosystems and biomass (AQA A-level Biology)
GJHeducationGJHeducation

Ecosystems and biomass (AQA A-level Biology)

(1)
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Writing half equations for electrolysis
GJHeducationGJHeducation

Writing half equations for electrolysis

(0)
A fully-resourced lesson which includes a lesson presentation (24 slides) and a worksheet which is differentiated so that students can judge their understanding of the topic of writing half equations for electrolysis and access the work accordingly. The lesson uses worked examples and helpful hints to show the students how to write half equations at both the cathode and anode. Time is taken to remind students about the rules at the electrodes when the electrolyte is in solution so that they can work out the products before writing the equations. This lesson has been designed for GCSE students (14 - 16 years old in the UK) but could be used with older students.
OCR A-level Biology A PAPER 1 REVISION (Biological processes)
GJHeducationGJHeducation

OCR A-level Biology A PAPER 1 REVISION (Biological processes)

(1)
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics. The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention: Monosaccharides, disaccharides and polysaccharides Glycogen and starch as stores and providers of energy The homeostatic control of blood glucose concentration Osmoregulation Lipids Ultrafiltration and selective reabsorption Diabetes mellitus Voluntary and involuntary muscle The autonomic control of heart rate The organisation of the nervous system The gross structure of the human heart Haemoglobin and the Bohr shift Bonding The ultrastructure of plant cells Cyclic vs non-cyclic photophosphorylation Oxidative phosphorylation Anaerobic respiration in eukaryotes Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied. If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?
Kidney failure and its potential treatments (OCR A-level Biology A)
GJHeducationGJHeducation

Kidney failure and its potential treatments (OCR A-level Biology A)

(0)
This is a fully-resourced lesson that covers the details of specification point 5.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the effects of kidney failure and its potential treatments. This lesson consists of an engaging PowerPoint (55 slides) and associated differentiated worksheets that look at the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson. This lesson is designed for A-level students who are studying the OCR A-level Biology specification and ties in nicely with the other uploaded lessons on this organ which include the structure and function of the nephron, ultrafiltration, selective reabsorption and osmoregulation.
Surface area to volume ratio (AQA A-level Biology)
GJHeducationGJHeducation

Surface area to volume ratio (AQA A-level Biology)

(0)
This lesson describes the relationship between the size of an organism or structure and its surface to volume ratio. The PowerPoint and accompanying worksheets have been designed to cover point 3.1 of the AQA A-level Biology specification and also have been specifically planned to prepare the students for the upcoming lessons in topic 3 on gas exchange and absorption in the ileum. The students are likely to have been introduced to the ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of the surface area to volume ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of larger organisms to increase the ratio at their exchange surfaces is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. This is further demonstrated by the villi and the microvilli on the enterocytes that form the epithelial lining of these folds in the ileum. The final part of the lesson introduces Fick’s law of diffusion so that students are reminded that the steepness of a concentration gradient and the thickness of a membrane also affect the rate of diffusion.
Edexcel GCSE Physics PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Physics PAPER 1 REVISION LESSONS

6 Resources
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the topics which can be assessed in PAPER 1 of the Pearson Edexcel GCSE Physics specification. All 7 topics that can be assessed in paper 1 are covered by these lessons: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Topic 7: Astronomy The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answer, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearrange of formulae to change the subject. If you would like to see the quality of the lessons, download the topics 4 & 5 and 7 lessons which have been shared for free
Prenatal testing & genetic screening (Edexcel SNAB)
GJHeducationGJHeducation

Prenatal testing & genetic screening (Edexcel SNAB)

(0)
This lesson describes the uses and implications of pre-implantation genetic diagnosis, amniocentesis and chorionic villus sampling. The lesson PowerPoint and accompanying worksheets have been primarily designed to cover point 2.15 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but regular links are made to the earlier content of topics 1 & 2, and their knowledge of topics including the heart and circulation, monohybrid inheritance and cystic fibrosis are tested. The lesson begins by challenging them to use this prior knowledge of topic 2 to identify the letters in the abbreviations PGD and CVS. The involvement of IVF to obtain the embryos (or oocytes) is then discussed and a series of exam-style questions are used to get them to understand how this method screens embryos prior to implantation, so that those identified as having genetic diseases or being carriers are not inserted into the female’s uterus. Mark schemes for all of the questions included in this lesson are embedded into the PowerPoint so students can constantly assess their progress. Moving forwards, Down syndrome (trisomy 21) is used as an example of a chromosomal abnormality that can be tested for using CVS or amniocentesis. Time is taken to describe the key details of both of these procedures so students have a clear understanding of the implications and the invasiveness to the female being tested. The link between amniocentesis and an increased risk of miscarriage is considered and the results of a 2006 study are used to challenge them on their data skills.
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Aerobic energy system (OCR A-level PE)
GJHeducationGJHeducation

Aerobic energy system (OCR A-level PE)

(0)
This detailed lesson describes the specific stages of the aerobic energy system and has been designed for the OCR A-level PE course. In line with the specification content in “Energy systems and ATP resynthesis”, the lesson describes the type of reaction, the sites of the specific stages within the system, the fuel used, the controlling enzymes, the ATP yield and the bi-products. The lesson begins by introducing the aerobic system as the system that becomes the dominant energy provider after the ATP-PC and glycolytic system. Students are challenged to recognise that this system supports lower intensity exercise but that it will support exercise for a much longer duration than the others, suggesting that it produces a high yield of ATP. The main part of the lesson looks at how this high yield of ATP is produced during glycolysis, the Krebs cycle and the electron transport chain and students will learn the location of each of these stages in the cell. Questions, discussion points and quiz competitions are included throughout the lesson and act as understanding checks to ensure that any misconceptions are addressed immediately. The final tasks of the lesson are a series of multiple choice questions and a quiz round called “UNLOCK THE AEROBIC SYSTEM SAFE” where the teams of students compete to recall the quantitative values associated with this topic.
Phospholipids & cholesterol (OCR A-level Biology)
GJHeducationGJHeducation

Phospholipids & cholesterol (OCR A-level Biology)

(0)
This engaging lesson describes the relationship between the structure, properties and functions of a phopholipid and cholesterol. The PowerPoint has been written as the second lesson in a series of two that cover specification points 2.1.2 (h), (i) & (j) of the OCR A-level Biology A course and there is a particular focus on their roles in membranes to link to module 2.1.5. In the previous lesson, the students met triglycerides and a quick quiz round called FAMILY AFFAIR is used at the start of the lesson to challenge the students on their knowledge of the structure of this macromolecule to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in module 2.1.5 on the fluid mosaic model. Students are briefly introduced to facilitated diffusion and reminded of active transport so they can recognise that proteins will be found in the membrane to allow for movement of large or polar molecules. The remainder of the lesson focuses on cholesterol, beginning with the structure. The hydrophobic nature of this molecule is then considered and discussed so that they can understand its role in the regulation of membrane fluidity. That just leaves one final quiz round which identifies vitamin D, testosterone and oestrogen as three substances that are formed from cholesterol
AQA GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Physics REVISION LESSONS

8 Resources
This bundle of 8 revision lessons uses a range of activities that include exam questions (with clearly explained answers), differentiated tasks and quiz competitions to engage students whilst they are revising the following topics that are found on the AQA GCSE Physics specification: Topic 1: Energy Topic 2: Electricity Topic 3: Particle model of matter Topic 4: Atomic structure Topic 5: Forces Topic 6: Waves Topic 7: Magnetism and electromagnetism Topic 8: Space Physics These lessons can be used for revision at the end of the topic or in the lead up to the mocks or actual GCSE exams so that students can assess the areas of the specification which need their further attention If you want to see the quality of the lessons, download the topic 1 and 5 lessons as these are free
Active & co-transport (AQA A-level Biology)
GJHeducationGJHeducation

Active & co-transport (AQA A-level Biology)

(1)
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
The body's immune response (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The body's immune response (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the differences between the roles of the B cells and T cells in the body’s immune response. The PowerPoint and accompanying resources have been designed to cover points 6.9 & 6.10 in unit 4 of the Edexcel International A-level Biology specification and includes descriptions of the role of the antigens and the production of antibodies by plasma (effector) cells In the previous lesson on the non-specific responses, the students were introduced to macrophages and dendritic cells as antigen-presenting cells and the start of this lesson challenges their recall and understanding of this process. Time is taken to discuss how the contact between these cells and lymphocytes is critical for the initiation of the body’s (specific) immune response. Moving forwards, a quick quiz competition is used to introduce the names of the different T cells that result from differentiation. Their specific roles are described including an emphasis on the importance of the release of cytokines in cell signalling to activate other immune system cells. T memory cells are also introduced so that students can understand their role in immunological memory and active immunity as described in an upcoming lesson. The next part of the lesson focuses on the B cells and describes how clonal selection and clonal expansion results in the formation of memory B cells and effector cells. A series of understanding and application questions are then used to introduce the structure of antibodies and to explain how the complementary shape of the variable region allows the antigen-antibody complex to be formed. The lesson concludes by emphasising that the pathogen will be overcome as a result of the combination of the actions of phagocytes, T killer cells and the antibodies released by the effector cells
Specific heat capacity
GJHeducationGJHeducation

Specific heat capacity

(13)
A detailed lesson presentation (25 slides) that introduces students to the difficult topic of specific heat capacity. Students are guided through the equation for energy transferred and shown how to rearrange the equation, so they are able to tackle the question, no matter the subject of the question. There are regular opportunities for students to apply their new found knowledge to questions and to assess themselves against the answers. Quick games and competitions are also used to maintain engagement. If you choose to download this lesson, it would be much appreciated if you would take just a few seconds to write a review so I can improve my practice and other teachers can see if this resource is right for them. Thank you in advance.
Polymers
GJHeducationGJHeducation

Polymers

(1)
A concise lesson presentation (19 slides) which looks at meaning of the key term, polymers, and briefly explores addition and condensation polymers. The lesson begins with a fun exercise to enable students to come up with the word polymers so that they can be introduced to the definition and then relate this to another term, monomers. A quiz competition is used to introduce addition and condensation polymers. Students are shown the displayed formulae and names of a few addition polymers and then challenged to use this to name and draw some others. They will then learn how DNA is an example of a condensation polymer. A set homework is included in the lesson which gets students to research thermosetting and thermosoftening polymers
Oxidative phosphorylation (AQA A level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (AQA A level Biology)

(0)
This detailed and clear lesson describes and explains how the electron transport chain and the chemiosmotic theory are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover the sixth part of point 5.2 of the AQA A-level Biology A specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.