Hero image

GJHeducation's Shop

Average Rating4.50
(based on 909 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1152k+Views

1956k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Ecosystems and biomass (AQA A-level Biology)
GJHeducationGJHeducation

Ecosystems and biomass (AQA A-level Biology)

(1)
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Topic 5.1: Photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.1: Photosynthesis (AQA A-level Biology)

4 Resources
This bundle of detailed lesson PowerPoints and accompanying resources have been designed to cover the content of topic 5.1 (Photosynthesis) in the AQA A-level Biology specification. This cellular reaction can prove difficult for the students to understand, so extra planning has gone into these 4 lessons to ensure that the key details of the reactions are embedded and understanding is constantly checked through a variety of activities. All of the exam-style questions which are used in these current understanding and prior knowledge checks have mark schemes that are included in the PowerPoint to allow the students to assess their work. If you would like to sample the quality of these lessons, download the chloroplast structure lesson as this has been uploaded for free.
Topic 2: Cells (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2: Cells (AQA A-level Biology)

20 Resources
This bundle contains 20 PowerPoint lessons which are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification: Structure and function of the organelles in eukaryotic cells The specialised cells in complex, multicellular organisms The structure of prokaryotic cells The structure of viruses which are acellular and non-living Measuring objects under an optical microscope Use of the magnification formula The principles of cell fractionation and ultracentrifugation The behaviour of chromosomes during the stages of the cell cycle Calculating the mitotic index Binary fission The basic structure of cell membranes The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol Simple diffusion Facilitated diffusion Osmosis, explained in terms of water potential The role of carrier proteins and the hydrolysis of ATP in active transport Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum Recognition of different cells by the immune system The identification of pathogens from antigens The phagocytosis of pathogens The cellular response involving T lymphocytes The humoral response involving the production of antibodies by plasma cells The structure of an antibody The roles of plasma cells and memory cells in the primary and secondary immune response The use of vaccines to protect populations The differences between active and passive immunity The structure of the human immunodeficiency virus and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free. I have also uploaded a lesson on optical microscopes (for free) but it isn’t included in this bundle as the limit of 20 resources has been reached!
Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)

11 Resources
This bundle contains 11 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification: The importance of water as a solvent in transport The difference between monosaccharides, disaccharides and polysaccharides The relationship between the structure and function of monosaccharides The formation and breakdown of disaccharides The relationship between the structure and function of glycogen, amylose and amylopectin The synthesis of triglycerides The differences between saturated and unsaturated lipids The relationship between the structure of capillaries, arteries and veins and their functions Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle The operation of the mammalian heart and the major blood vessels The role of haemoglobin in the transport of oxygen and carbon dioxide The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect The course of events that lead to atherosclerosis The blood clotting process If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
Evidence for Evolution
GJHeducationGJHeducation

Evidence for Evolution

(1)
A detailed lesson presentation (37 slides) and associated worksheets that looks at the different pieces of evidence that scientists use to support evolution and discusses how these support the theory. The lesson begins by challenging students to decide which piece of evidence is the key piece in supporting evolution (fossils). Students will then have to arrange a number of statements to describe how a fossil is formed. Students are introduced to the fossil record and questions are used to check that they understand where the oldest fossils would be found. Moving forwards, students are given three pieces of evidence that would be observed in the fossil record and they are challenged to explain how each of these supports the theory of evolution. Quick competitions are then used to get the students to see some extinct organisms in the Dodo and Woolly Mammoth and again they are questioned on how extinct animals support the theory of evolution. Further evidence in rapid changes in species and molecular comparison is discussed. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included.
Antibiotic resistance (Edexcel A-level Biology B)
GJHeducationGJHeducation

Antibiotic resistance (Edexcel A-level Biology B)

(0)
This lesson describes the development and spread of antibiotic resistance in bacteria and discusses the difficulties in controlling this spread. The PowerPoint and accompanying worksheet have been designed to cover specification points 6.4 (i & ii) of the Edexcel A-level Biology B specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the spread of MRSA and to try to prevent the development of resistance in other strains.
The brain (AQA GCSE Biology)
GJHeducationGJHeducation

The brain (AQA GCSE Biology)

(1)
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer. The following content is covered in this lesson: The functions of the cerebral cortex, medulla and cerebellum Identification of the regions of the brain on an external and internal diagram The early use of stroke victims to identify functions The key details of the MRI scanning technique The difficulties of diagnosing and treating brain disorders and disease As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
Efficiency of energy transfer (AQA A-level Biology)
GJHeducationGJHeducation

Efficiency of energy transfer (AQA A-level Biology)

(2)
This lesson describes and explains how production is affected by a range of farming practices designed to increase the efficiency of energy transfer. The PowerPoint and accompanying resources are part of the third lesson in a series of 3 which have been designed to cover the detail included in specification point 5.3 of the AQA A-level Biology specification. Over the course of the lesson, a range of tasks which include exam-style questions with displayed mark schemes, guided discussion periods and quick quiz competitions will introduce and consider the following farming practices: raising herbivores to reduce the number of trophic levels in a food chain intensely rearing animals to reduce respiratory losses in human food chains the use of fungicides, insecticides and herbicides the addition of artificial fertilisers The ethical issues raised by these practices are also considered and alternative methods discussed such as the addition of natural predators and the use of organic fertilisers like manure As this is the last lesson in topic 5.3, it has been specifically planned to challenge the students on their knowledge of the previous two lessons and this includes a series of questions linking farming practice to the formula to calculate net production
Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)

10 Resources
As the 1st topic on the Pearson Edexcel A-level Biology A (Salters Nuffield) course, the Lifestyle, health and risk topic is extremely important to introduce the students to the detail needed for success in this subject. Extensive planning has gone into all 10 lessons included in this bundle to motivate and engage the students whilst covering the following specification points: The importance of water The structure and function of blood vessels The cardiac cycle and the relationship between the structure and operation of the heart to its function The course of events that lead to atherosclerosis The blood clotting process The differences between monosaccharides, disaccharides and polysaccharides The structure and role of the monosaccharides Understand how monosaccharides join to form disaccharides and polysaccharides through condensation reactions and are split through hydrolysis reactions The relationship between the structure and roles of the polysaccharides The synthesis of a triglyceride by the formation of ester bonds between glycerol and fatty acids The difference between saturated and unsaturated lipids The PowerPoints and accompanying resources contain a wide variety of tasks which include exam-style questions with mark schemes, guided discussion points and quick quiz competitions.
Module 2.1.1: Cell structure (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.1: Cell structure (OCR A-level Biology A)

6 Resources
As cells are the building blocks of living organisms, and Biology is the study of life, it’s fairly obvious that a clear understanding of cell structure is going to be critical for the success of an A-level student on the OCR A-level Biology A course. The 6 lessons included in this bundle are highly detailed and have been intricately planned to contain the detail needed at this level and to make links to topics in the other modules of the specification. The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst covering the following specification points in module 2.1.1: The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between resolution and magnification The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences in the structure and ultrastructure of prokaryotic and eukaryotic cells If you would like to sample the quality of the lessons included in this bundle, then download “The use of microscopy” and “cytoskeleton” lessons as these have been uploaded for free
Investigating diversity (AQA A-level Biology)
GJHeducationGJHeducation

Investigating diversity (AQA A-level Biology)

(1)
This lesson describes how genetic diversity within, or between species, can be investigated by comparison of characteristics or biological molecules. The PowerPoint and accompanying worksheets are primarily designed to cover the content of point 4.7 of the AQA A-level Biology specification but as this is the last lesson in the topic, it has also been planned to contain a range of questions, tasks and quiz rounds that will challenge the students on their knowledge and understanding of topic 4. Over the course of the lesson, the students will discover that comparisons of measurable or observable characteristics, DNA and mRNA sequences and the primary structure of common proteins can all be used to investigate diversity. Links are continually made to prior learning, such as the existence of convergent evolution as evidence of the need to compare biological molecules as opposed to the simple comparison of phenotypes. The issues associated with a limited genetic diversity are discussed and the interesting biological example of the congenital dysfunctions consistently found in the Sumatran tigers in captivity in Australia and New Zealand is used to demonstrate the problems of a small gene pool. Moving forwards, the study of the 16S ribosomal RNA gene by Carl Woese is introduced and students will learn that this led to the adoption of the three-domain system in 1990. The final part of the lesson describes how the primary structure of proteins like cytochrome c that is involved in respiration and is therefore found in most living organisms can be compared and challenges the students to demonstrate their understanding of protein synthesis when considering the differences between humans and rhesus monkeys.
AQA A-level Biology Topic 7: Genetics, populations, evolution and ecosystems
GJHeducationGJHeducation

AQA A-level Biology Topic 7: Genetics, populations, evolution and ecosystems

17 Resources
This bundle contains 17 fully-resourced and detailed lessons that have been designed to cover the content of topic 7 of the AQA A-level Biology specification which concerns genetics, populations, evolution and ecosystems. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The use of genetic terminology The inheritance of one or two genes in monohybrid and dihybrid crosses Codominant and multiple alleles The inheritance of sex-linked characteristics Autosomal linkage Epistasis as a gene interaction The use of the chi-squared test Species exist as one or more populations The concepts of gene pool and allele frequency Calculating allele frequencies using the Hardy-Weinberg principle Causes of phenotypic variation Stabilising, directional and disruptive selection Genetic drift Allopatric and sympatric speciation Species, populations, communities and ecosystems Factors affecting the populations in ecosystems Estimating the size of a population using randomly placed quadrats, transects and the mark-release-recapture method Primary succession, from colonisation by pioneer species to climax community Conservation of habitats frequently involves the management of succession This is one of the 8 topics which have to be covered over the length of the 2 year course and therefore it is expected that the teaching time for this bundle will be in excess of 2 months If you want to see the quality of the lessons before purchasing then the lessons on codominant and multiple alleles, epistasis and phenotypic variation are free resources to download
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Module 3: Exchange and transport (OCR A-level Biology A)
GJHeducationGJHeducation

Module 3: Exchange and transport (OCR A-level Biology A)

18 Resources
This bundle contains 18 detailed and engaging lessons which cover the following specification points in module 3 (Exchange and transport) of the OCR A-level Biology A specification: 3.1.1: Exchange surfaces The need for specialised exchange surfaces The features of an efficient exchange surface The structures and functions of the components of the mammalian gaseous exchange system The mechanism of ventilation in mammals The mechanisms of ventilation and gas exchange in bony fish and insects 3.1.2: Transport in animals The double, closed circulatory system in mammals The structure and functions of arteries, arterioles, capillaries, venules and veins The formation of tissue fluid from plasma The external and internal structure of the heart The cardiac cycle How heart action is initiated and coordinated The use and interpretation of ECG traces The role of haemoglobin in transporting oxygen and carbon dioxide The oxygen dissociation curve for foetal and adult haemoglobin 3.1.3: Transport in plants The structure and function of the vascular systems in the roots, stems and leaves The transport of water into the plant, through the plant and to the air surrounding the leaves The mechanism of translocation As well as the detailed A-level Biology content of the PowerPoint slides, the resources contain a wide range of tasks including guided discussion points, exam-style questions and quiz competitions which will engage and motivate the students
Cell theory and organisation (Edexcel A level Biology B)
GJHeducationGJHeducation

Cell theory and organisation (Edexcel A level Biology B)

(0)
This detailed lesson introduces the 3 main principles of the cell theory and describes how cells are organised into tissues, organs and organ systems. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1 (i) & (ii) of the Edexcel A-level Biology B specification. The cell theory is introduced at the start of the lesson and the 1st principle is immediately discussed to ensure that students are aware that all living organisms are made of cells. This principle is discussed with relation to viruses to enable students to understand that the lack of cell structure in a virus is one of the reasons that they are not considered to be living. The second principle states that the cell is the basic unit of structure and organisation and this leads into the main part of the lesson where specialised cells and their groupings into tissues are considered. Students are challenged to compare an amoeba against a human to get them to focus on the difference in the SA/V ratio. This acts as an introduction into the process of differentiation and a recognition of its importance for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The third principle states that cells arise from pre-existing cells and this will be demonstrated later in topic 2 with mitosis and meiosis.
Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)

(0)
This is a fully-resourced REVISION lesson that challenges the students on their knowledge of the content found in TOPIC 4 (Biodiversity and Natural resources) of the Edexcel A-level Biology (Salters Nuffield) specification. The lesson contains an engaging PowerPoint (104 slides) and accompanying worksheets that use a range of exam questions, differentiated tasks and quiz competitions to motivate the students whilst they evaluate their knowledge of the different sub-topics. The lesson has been designed to cover as much of the topic 4 specification as possible, but the following sub-topics have been given particular attention: Three-domain classification The features of the kingdoms Evolutionary relationships Behavioural, anatomical and physiological adaptations Glycosidic bonds The structure and function of cellulose The ultrastructure of plant cells Calculating the index of diversity and the heterozygosity index Applying the Hardy-Weinberg principle to calculate allele frequencies This lesson is suitable for revision at the end of the topic, in the lead up to the mocks or in the lead up to the actual A-level exams as topic 4 is assessed on both Paper 1 and Paper 2.
Structure of plant cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of plant cells (Edexcel Int. A-level Biology)

(0)
This lesson describes the structure and ultrastructure of plant cells to allow students to compare this structure against animal cell structure. The detailed PowerPoint and accompanying resources have been designed to cover points 4.1 (i) & (ii) in unit 2 of the Edexcel International A-level Biology specification and also describes the functions of the cell wall, chloroplast, amyloplast, vacuole, tonoplast, plasmodesmata, pits and middle lamella The lesson begins with a task called REVERSE GUESS WHO which will challenge the students to recognise a particular organelle from a description of its function. This will remind students that plant cells are eukaryotic and therefore contain a cell-surface membrane, a nucleus (+ nucleolus), a mitochondria, a Golgi apparatus, ribosomes and rough and smooth endoplasmic reticulum like the animal cells. Moving forwards, the next part of the lesson focuses on the relationship between the structure and function of the vacuole, chloroplast, plasmodesmata and cellulose cell wall. When considering the vacuole, key structures such as the tonoplast are described as well as critical functions including the maintenance of turgor pressure. A detailed knowledge of the structure of the chloroplast at this early stage of their A-level studies will increase the likelihood of a clear understanding of photosynthesis when covered in topic 5. For this reason, time is taken to consider the light-dependent and light-independent reactions and to explain how these stages are linked. Students will learn that chloroplasts and amyloplasts can contain stores of starch so an opportunity is taken to challenge them on their knowledge of this polysaccharide as it was covered in topic 1. The final task challenges them to recognise descriptions of the cell wall, chloroplast, amyloplasts, vacuole, tonoplast and plasmodesmata which will leave 2 remaining which describe the pits and middle lamella.
Specific heat capacity
GJHeducationGJHeducation

Specific heat capacity

(13)
A detailed lesson presentation (25 slides) that introduces students to the difficult topic of specific heat capacity. Students are guided through the equation for energy transferred and shown how to rearrange the equation, so they are able to tackle the question, no matter the subject of the question. There are regular opportunities for students to apply their new found knowledge to questions and to assess themselves against the answers. Quick games and competitions are also used to maintain engagement. If you choose to download this lesson, it would be much appreciated if you would take just a few seconds to write a review so I can improve my practice and other teachers can see if this resource is right for them. Thank you in advance.
The Collision Theory
GJHeducationGJHeducation

The Collision Theory

(9)
A concise lesson presentation (20 slides) that looks at how the collision theory is related to the rate of reaction. This is a short lesson that would be taught at the beginning of the topic that looks at the rate of reaction and the factors that affect the rate. Students are challenged with a quick competition that gets them to recognise keywords which are involved in the collision theory. Some time is then taken to focus on "activation energy" and how this is shown on a reaction profile. Finally, students will use their keywords to form a clear definition for the collision theory which includes its link to the rate of reaction so this can be used in the upcoming lessons This lesson has ultimately been designed for GCSE students but can be used with all age groups as an introduction to the topic
Surface area to volume ratio
GJHeducationGJHeducation

Surface area to volume ratio

(16)
An engaging lesson presentation (16 slides) which looks at the surface area to volume ratio and ensures that students can explain why this factor is so important to the organisation of living organisms. This is a topic which is generally poorly misunderstood by students and therefore time has been taken to design an engaging lesson which highlights the key points in order to encourage greater understanding. The lesson begins by showing students the dimensions of a cube and two answers and challenges them to work out what the questions were that produced these answers. Students are shown how to calculate the surface area and the volume of an object before it is explained how this can then be turned into a ratio. Time is taken at this point to ensure that students can apply this new-found knowledge as they have to work out which of the three organisms in the “SA: V OLYMPICS” would stand aloft the podium. Students are given the opportunity to draw conclusions from this task so that they can recognise that the larger the organism, the lower the surface area to volume ratio. The lesson finishes by explaining how larger organisms, like humans, have adapted in order to increase the surface area at important exchange surfaces in their bodies. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but is perfectly suitable for A-level students who want to look at this topic from a basic level