Hero image

SWiftScience's Shop

Average Rating4.26
(based on 750 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

620Uploads

775k+Views

452k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA Trilogy GCSE (2016) Biology - Anaerobic Respiration
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Anaerobic Respiration

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Bioenergetics’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Firstly pupils are asked to consider why organisms may not be able to continuously carry out aerobic respiration. They can discuss in pairs and then as a class and be introduced to the idea of anaerobic respiration. They will fill then complete a fill-in-the-blank task to sum up this process. Pupils will then watch a video where they will answer questions about anaerobic respiration, their answers can be checked against the mark scheme provided. Now pupils are introduced to the idea of oxygen debt, they are given an information card in pairs (for lower ability classes you may want to tag read this as a class) and then pupils will need to answer questions about this information. They can talk about in partners, once finished they can self or peer assess their work. Finally the different products of anaerobic respiration that are made in different organisms are highlighted, it is touched upon in the video but this is clear slide to show anaerobic respiration in plants, bacteria and yeast. Pupils will complete some exam-style questions to assess their knowledge of this topic, can be answered in the back of their books to fully test them! Pupils can then mark their own work using the mark scheme provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Global warming & the impact of change
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Global warming & the impact of change

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is for pupils to think > pair > share the factors which may cause a contribution of carbon dioxide into our atmosphere. Pupils can create a mind map in their books and then discuss their ideas as a table and then as a class. The next PowerPoint slide reveals some of the main factors which contribute to an increase in carbon dioxide levels in our atmosphere, pupils can check their work against these answers. For the next task pupils will be required to watch a video about the greenhouse effect and answer questions in their books, this task can be self-assessed using the answers provided once complete. Using this information pupils will then be asked to fill in the blanks on a diagram depicting the greenhouse effect, pupils will be given captions to write into the correct boxes on their worksheet. This can be self-assessed once it has been completed. Next pupils will be given a set of data on the mean world temperature change from 1960 to present day, students will be required to plot the data on a graph, describe the pattern of the graph and explain why the graph may be showing this pattern. The next part of the lesson focuses on global warming, students will firstly be given a set of questions which they will need to answer whilst watching a video. This work can then be self-assessed using the answers provided. For the very last task pupils will be given a card of information each detailing an environmental factor and it’s impact on living organisms. Pupils will need to wander around the room and share information with each other to complete their table of environmental factors. The plenary task is for pupils to identify what the questions might be for a set of answers provided on the PowerPoint presentation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Smoking
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Smoking

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with some facts and figures about the rates of smoking around the world, how many cigarettes are smoked daily and the different chemicals found in cigarette smoke and which of these are linked with disease. Students will now watch a video on the chemicals found in cigarette smoke and the damage these chemicals can do to the body, whilst watching the video students will need to answer a couple of questions. The answers to these questions are then revealed using the PowerPoint, students can self-assess their work. Students will now watch another video on smoking and the effect on your health, students will be given a set of questions that they will need to answer using the video. Once this task is complete, students will self-assess their work using the mark scheme provided. The latter part of the lesson involves an activity whereby students will be given a worksheet of questions, there will be information posters placed around the room which students will need to use to answer questions on their worksheet. The mark scheme for this task is included in the PowerPoint presentation for students to peer-assess their work with their partners. Students will then need to complete a ‘feedback quadrant’ of their partners work, this includes a positive comment, something they missed out which should have included and a question to test their understanding of the lesson content. The very last task requires students to read a graph of information on the death rates due to different smoking-related illnesses. Students should answer the set of questions using the data, this task can then be self-assessed using the mark scheme provided. The plenary requires students to write three sentences to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Monoclonal Antibodies and their uses begins with a review of antibodies, plasma b-cells and memory b-cells. Students should also describe the humoral immune response to a pathogen. Students are then introduced to monoclonal antibodies through description on the slides and a short video. They should take notes and be prepared to fill in a diagram using the statements on the slide. A complete diagram is on the following slide for self-assessment. The next slides introduce the use of monoclonal antibodies, and then explain how they may be used to target cancer cells, test for pregnancy, and create medical diagnoses. Students will then watch another video which explains pregnancy tests. They will answer a few questions while watching and may self-assess to the answers on the next slide. Another included task asks students to complete a table explaining how monoclonal antibodies are used in various methods, by using information cards posted throughout the room. Using this information students will think > pair > share to discuss ethical issues regarding the production of monoclonal antibodies. They will watch three short vidoes to inform their discussion and should include risks, benefits, and impacts on both the individual and society in their answers. Some sample discussion points are available in the notes below the slide. To consolidate, students will be given a mixture of information cards to sort into a table of advantages and disadvantages of monoclonal antibodies. The plenary task is to create a three-question quiz to test their peers on today’s lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Transport in plants
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Transport in plants

(4)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures. Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants. The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint. Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work. The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them. The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge! Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task. All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson outlines the definition of deforestation and some key facts and figures about the destruction of forests around the world. The next task is for pupils to discuss why they think rainforests may be being cut down & the consequences this might have on a local & global scale. The next two slides outlines the four main reasons why rainforests are being destroyed and some of the consequences of their destruction, pupils can check their work against the answers provided. The next task requires pupils to watch a video and answers questions using the information provided in the video, once they have completed the question they can asses their work using the answers provided. Pupils will now be required to complete a recap task on the carbon cycle, they will be given a worksheet which they will be asked to fill in using the captions provided on the PowerPoints slide. Once this has been completed pupils can assess their work using the answers on the PowerPoint slide. The next part of the lesson focuses on the importance of peat, firstly pupils will be given a set of information about peat bogs and they will be required to answer questions using this information. This work can be self or peer assessed once it has been completed. The final task is for pupils to answer an exam-style question on the carbon cycle and deforestation. Pupils can assess their work using the mark scheme provided. The plenary task is for pupils to choose words from a list of key words to formulate three summary sentences on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, specifically for the higher-tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to the work of Gregor Mendel, students will firstly watch a video and answer questions using the information provided. Once finished with this introductory task pupils can self-assess their work against the marking criteria. The next task focuses on genetic diagrams drawn to represent the crosses Gregor Mendel carried out during his investigations. Pupils will be prompted to draw the genetic diagrams themselves to show the genotypes of offspring of the F1 and F2 generation of pea plants in the example given. There is a prompt which you can reveal for those students of a lower ability. Once this task is complete pupils can check their work against the answers which are provided. Now there is a quick check mid-plenary for pupils to consolidate knowledge of what they have learnt so far, a set of questions is provided and the mark scheme for pupils to check their work against. The next part of the lesson focuses on why Mendel’s important work was not wholly recognised within his lifetime, pupils can read an extract of information and use this to answer questions. Once complete pupils can self-assess their work using the answers provided. The final part of the lesson is looking at how Mendel’s work was imperative to the development of the double-helix model of DNA and subsequent genetic research and discoveries. Pupils will need to read a page of information, in pairs, and answer questions provided on the PowerPoint slide. For those pupils of a lower ability it may be easier to tag read the information and answer questions in groups. Once completed pupils can check their work against the success criteria provided. The final task is for pupils to answer an exam question on this topic, pupils can complete in their books (at the back of their books for an extra challenge) and assess their work using the mark scheme once complete. The plenary task is for pupils to come up with a questions that they would like to ask Mendel about his work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Energy and ATP
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Energy and ATP

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter discussion to review the enzymes needed for DNA replication and the process of DNA replication itself. Students are then asked to make a list in their books of all of the biological processes that require energy. Students are then taught to think of ATP as an ‘energy currency’ and on the following slide asked to define the parts of the structure of ATP before reviewing ATP’s function. Students should use the ‘ATP handout’ to take notes. The next task asks students to answer a few questions on their mini whiteboards and discuss with a partner how ATP releases energy. Answers for self-assessment are on the next slide. The following slides explain the synthesis, roles, and properties of ATP. You will find further details for these slides in the ‘notes’ section under each slide. Students are then encouraged to ‘think > pair > share’ some ideas of why ATP’s properties might be useful to the role of ATP in cells. Answers for self-assessment are on the following slide. Students are then given an activity task to demonstrate knowledge of energy-requiring processes. Each student will be given a description of a process, these can be found at the end of the slideshow, there are five processes in total. Students should then work in small groups to teach each other the different processes and produce a table to represent what they’ve learned. After completing the lecture and tasks students are given four summary questions to answer in their books and self or partner-assess. Students should then make note of the summary slide before concluding the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Specification - Drug Trials
SWiftScienceSWiftScience

NEW AQA GCSE Specification - Drug Trials

(1)
This is a resource for the NEW AQA GCSE Biology 'Infection & Response' unit. Please find further resources designed to meet specification points for the NEW AQA Biology, Chemistry and Physics specifications at: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly consider some traditional medicines such as digitalis for dropsy, willow trees for aspirin and penicillin mould. Pupils then consider the time and money taken to conduct a drug trial, as well as the stages that are involved. Pupils will watch a video to determine the definition of a placebo and a double-blind trial, pupils should also use the video to identify how clinical scientists maintain a fair test during a clinical trial. The next part of the lesson pupils will be introduced to what happens during the pre-clinical trial phase and the three stages of the clinical trial phase. Once students have learnt this they will need to match the key words to the definitions. They will also be given a set of 6 statements which they need to write in order, as a flow diagram, in their books to represent the stages of the drug trialling process. Pupils can then self-assess their work. There is a 6-mark question on what they have learnt this lesson. To really test pupils' knowledge they should try and complete this in the back of their books, perhaps giving them a set of key words as prompts. For a less able class, they should be able to use their notes from the lesson. Pupils can peer-assess their work using the marking criteria on the PowerPoint slide. All of the resources can be found on the PowerPoint slide, there is also extra resources at the end which could be used in an extra lesson or as a homework activity. Other lessons from the 'Infection and Response' unit can be found in my TES shop :)
NEW AQA GCSE Trilogy (2016) Biology - Controlling fertility
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Controlling fertility

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by students considering in pairs/groups the names of different methods of contraception they have already heard of, they can create a mind map in their book which can then be checked against the list provided. Pupils will then watch a video which runs through some of the types of contraception out there and their pro’s and con’s, pupils will need to watch the video and note down as many advantages and disadvantages of these methods of contraception as they can. This task can be self-assessed using the answers provided. In the next activity pupils will be given a card sort in pairs or in groups, they will need to read through the information on methods of contraception and complete a table to summarise how these methods work or prevent pregnancy as well as their advantages and disadvantages. The next part of the lesson looks at the history of contraception, pupils will watch a video about Margaret Sanger - a progressive nurse in New York during the early 20th century. They will need to answer questions whilst watching the video, once finished their answers can be checked against the mark scheme provided. The final task is a ‘quick check -silent 5’ task, pupils will need to answer the summary questions about what they have learnt this lesson into their books. The plenary activity is for pupils to summarise what they have learnt this lesson in three sentences, using the list of key words that have been provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :
NEW AQA GCSE Biology - 'Cells' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Cells' lessons

14 Resources
This bundle of resources contains 11 lessons which meet all learning outcomes within the ‘Cells’ unit for the NEW AQA Biology Specification. Lessons included: 1. Cells 2. Specialised cells 3. Eukaryotic and prokaryotic cells 4. Microscopy 5. Chromosomes 6. Mitosis 7. Stem cells 8. Diffusion 9. Osmosis 10. Active Transport 11. Exchanging materials The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks and 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA Trilogy GCSE (2016) Biology - Mitosis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Mitosis

(2)
This is a resource which meets specification points within the NEW AQA GCSE Trilogy 'Cells' Sow. Other lessons designed for the new 'Cells' SoW and other new Trilogy Biology and Physics SoW can be found in my TES shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by identifying the purpose of mitosis - growth and repair. Pupils will then be given a double-sided worksheet, the first side corresponds to the first 5 mins 51 seconds of the video included in the PowerPoint slide. Pupils will need to watch the video and answer the questions on the sheet, they are in order but for lower ability classes you may want to stop the video and guide pupils through the work. Self-assess this work using the answers provided in the PowerPoint before moving on with the video. The next part of the video guides pupils through what happens during Mitosis - Prophase, Metaphase, Anaphase, Telophase. Pupils have diagrams of the the processes on the back of their worksheet, they will need to use the video to name the stages and describe what is happening. Self-assess work using the answers that are provided in the PowerPoint. The next activity, pupils are given real images of a cell going through mitosis and descriptions of the stages, they need to cut and stick the stages and the pictures in the correct order to complete a flow diagram. Pupils peer or self-assess their work using red/green pens. **Past-paper question provided as an extra activity for higher-ability pupils - pupils answer the question in their books and peer-assess using the mark scheme** Plenary - pupils write a text message or a tweet to their friend to tell them what they have learnt about this lesson. All resources are included, as well as mark schemes for when pupils self/peer-assess their work. Please leave a review with feedback :) thanks!
NEW AQA GCSE Trilogy (2016) - The human nervous system
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) - The human nervous system

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by looking an organism - a cat- and asking pupils to think about the types of stimulus the cat might respond to in it’s environment, plus which organs it needs to sense these stimuli. Pupils will brainstorm their ideas and then self-assess their work once the answers are revealed, additionally they will answer an exam question on this topic. Next, pupils focus on the effectors and their role in the nervous system. Pupils will be provided with a description of the role of muscles and glands as effectors and will then need to complete an exam question to assess their knowledge, mark scheme provided for either peer or self-assessment. The next part of the lesson will focus on neurons, firstly a diagram of a neuron cell is shown and pupils need to think about how this cell is similar and different to a normal animal cell. Pupils may discuss this in pairs and try and come up with an answer before the mark scheme is revealed. Sensory and motor neurons are now introduced via an animation, pupils can look at the pathway the electrical impulse travels as it moved around the nervous system. Pupils will use this to then copy and complete a summary to describe this process, when completed this can be self-assessed. The final activity is for pupils to copy and complete a table to sum up the main functions of each part the human nervous system either by using a card sort or by putting the statements on the board. This can then be peer or self-assessed when complete The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Digestive System
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Digestive System

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction into what happens to your food during the process of digestion, students are shown a diagram which demonstrates how large, insoluble food molecules are broken down into small, soluble ones. This follows into the definition and role of the human digestive system, students now need to discuss their ideas of the names of organs present in the digestive system. After a short class discussion, students will now complete a ‘Memory Test’ task. Students will need be shown a diagram of the human digestive system with organs labelled. They will have a few minutes to memorise the names of the organs of the digestive system, the labels will be taken away and then students need to try to remember as many of them as possible, by labelling their own digestive system worksheet. This task can be self-assessed once it is competed. Next, students will be given an information sheet in pairs. Students will need to read the information sheet and using this write a description of the roles of a set of organs present in the digestive system. Once complete, students can mark and correct their work using the answers provided in the PowerPoint. Lastly, students are shown a diagram of the villi which are present in the small intestine. Students will need to describe the adaptations of the villi which aid the role of absorption of small molecules into the bloodstream. The final activity requires students to find ten word, all related to the digestive system, in a word search. The plenary activity is a set of answers, students will need to write the questions which match up these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – HIV
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – HIV

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the human immunodeficiency virus begins with a starter discussion on immunity and vaccination. Students should discuss the features of a successful vaccination program, and why vaccination cannot often eliminate a disease. Students are then introduced to the structure of HIV and its function as a retrovirus. To explain the infection process students will watch a short video while answering questions in their books. Answers are available on the following slide for self-assessment. The next task is a worksheet for students to label and correctly describe each stage of HIV infection and replication. They can self-asses to the next slide. Students will then discuss the process by which HIV causes the symptoms of AIDS. The following slides explain the function of antibiotics and explain why these are not suitable for treating viruses. In order to introduce the ELISA test, students will watch two short animations and answer questions in their books. Answers are on the following slide for self-assessment. They should take thorough notes in their book, on two diagrams of indirect and direct ELISA. The plenary is to write a tweet demonstrating their learning, including #keywords! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Vaccination
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Vaccination

(2)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a review discussion of antibodies. Students should describe the structure and function of antibodies in addition to the roles of plasma and memory cells. Students are then introduced to the function of vaccines a simulation of immune response through a descriptive graph. They should take notes of the following slides which define immunity, both passive and active. The two forms of immunity are also described as a flowchart, students will use this chart to help them complete the first task of the lesson! Answers are available on the following slide for self-assessment. The second task is to copy and complete a table to summarise active and passive immunity. The next slides introduce the three main types of vaccines, students should take good notes before answering an exam style question. Answers are available on the following slide for self-assessment. Students will then think>pair>share to discuss the features of a successful vaccination program. They should consider side effects, administration, production, and herd immunity. Herd immunity is then defined and used to explain historical examples of population-wide vaccinations. Students will use these slides to inform the next task, in which they’ll be asked to consider why a vaccine may fail to eliminate a disease. They will be given a short reason and asked to describe why this reason impacts immunity. Answers for self-assessment are available on the following slide. The plenary task for this lesson is to create a keywords list from the lesson overall. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Specification - Antibiotics & Painkillers
SWiftScienceSWiftScience

NEW AQA GCSE Specification - Antibiotics & Painkillers

(3)
This a resource aimed at the new AQA GCSE Biology specification as part of the 'infection & response' unit. This lesson is part of a 12 lesson bundle for the NEW 'Infection & Response' Unit, found in my TES shop - https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap of what makes a good medicine. Pupils are then given a scenario where they have to read some information cards on different medicines and using the information they need to decide which medicine would be the best to treat a bacterial infection. The next PowerPoint slide will go through the difference between antibiotics and painkillers and hopefully students should have chosen the antibiotic as the drug to treat bacterial infections in the previous activity. Next is an introduction to Alexander Fleming, the scientist who first discovered penicillin. Pupils can watch a video on his work and answer questions on a worksheet. Pupils can then peer-assess their work. The next few slides focus on how the growth of bacteria are affected by antibiotics, pupils can then use some data on the growth of bacteria to answer some questions. For the plenary pupils need to choose the correct word to complete the sentences. Other lessons for the NEW AQA 'Infection & Response' unit can be found in my TES shop. Thanks :)
NEW AQA GCSE Trilogy (2016) Biology - Air Pollution
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Air Pollution

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers. The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint. The next part of the lesson is on catalytic converters, pupils will be given some information about a catalytic converter and a human bingo grid. Pupils will wander around the room and others will ask them questions in order to fill in their bing grid. Once a student has completed their grid they can shout bingo! When everyone has had enough time to complete the grid they will need to self-assess their work using the answers provided. The next task is for pupils to consider alternative fuels as a way of reducing air pollution. Pupils are given sets of information about three alternative fuels, they will then need to fill in a table of the advantages and disadvantages of these fuels. Once completed pupils can check their work against the answers provided, marking and correcting their answers. A mid-lesson progress check requires pupils to identify whether a set of statements are true or false, this can be completed with a mini whiteboard or in their books. The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results. The plenary task is for pupils to complete a fill-in-the-blanks task on air pollution, pupils can also self-assess their work using the answers provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Variation
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Variation

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students given some pictures of a range of people that look differently to one another, students will need to think > pair > share what the differences are between these people and the reasons why they look different to each other. Pupils will then be introduced to the difference between examples of inherited and environmental characteristics. Firstly pupils will focus on inherited characteristics, the students will need to complete a mind map in their books of the traits they have inherited from their parents (or from grandparents). As an extra challenge pupils can consider why they do not look identical to either parent. The next task will focus on environmental characteristics, pupils will need to draw a table in their books and they will need to sort examples of environmental factors with the type of environmental variation they cause into the table correctly. This work can be self-assessed once it is is complete using the answers provided. For the next activity pupils will be given a card sort of different examples of variation, e.g. height, freckles, eye colour, tattoos. Pupils will need to sort these cards into a Venn diagram in their books - just inherited variation, just environmental variation or potentially caused by both. This work can be self-assessed once it is complete. The next part of the lesson focuses on types of data - continuous or discontinuous. Pupils are firstly shown the difference between the two and then they will need to complete a worksheet to assess their understanding on this. Once completed the worksheet can be self or peer assessed. The final task is for pupils to get into teams (or be sorted by the teacher into teams) and they work their way around the room filling in information about themselves for different types of traits (e.g. handedness, foot length, whether they can roll their tongue). Pupils will assigned one trait each and will need to produce a graph of the class results. This will test their understanding of continuous vs. discontinuous data and how this should be represented in a graph format. The plenary task is for pupils to consider a world where there was no variation and discuss the advantages and disadvantages of this world, trying to use some of the key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)