Hero image

SWiftScience's Shop

Average Rating4.26
(based on 754 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

798k+Views

461k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW (2016) AQA AS Biology – Cell Specialisation & Organisation
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Cell Specialisation & Organisation

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on cell specialisation and organisation begins with a discussion to review specialised cell examples. Students should also describe the difference between smooth and rough endoplasmic reticulum, as well as the role of chloroplasts. To review organelles, students are then given a matching worksheet with descriptions of nine organelles. They can check the names of each with the answers on the slide. This task leads them to a series of organelle images to label and check as well. Students are then tasked with past-paper questions to check their understanding of cell structure. A mark scheme is on the next slide. To begin the discussion of cell specialisation students are tased with a worksheet to try with a partner. The worksheet asks students to consider what information each organelle can tell us. Suggested answers are on the following slides. The lesson should then spark some conversation about the organisation of certain cells, before students work through a few slides of questions about cell organisation in general. After learning the levels of cell organisation students are led through a few examples to decide for themselves which level each example fits in. To synthesise their learning, students will work through a ‘cut & stick’ task to create a table of each cell type and its characteristics. A completed table is on the following slide so students may self-asses. The plenary for this lesson is to write three sentences in their book summarising what they’ve learned! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Quantitative Chemistry' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Quantitative Chemistry' lessons

7 Resources
This bundle of resources contains 8 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Quantitative Chemistry’ unit for the NEW AQA Chemistry Specification. Lessons included: Relative formula mass and moles Balancing equations and reacting masses Limiting reactants and percentage yield Atom economy HT Concentration and titrations Titration practical and calculations HT Volume of gases The lessons contain a mix of differentiated activities, progress check and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Extracting metals from ores
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Extracting metals from ores

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a task whereby pupils need to use their phones/laptops to research the dates in which different metals were discovered. They should complete the table in their books and then write a sentence to summarise the relationship between the date in which the metal was discovered and it’s reactivity. The first part of the lesson now focuses on extraction of copper from copper-rich ores, two methods are firstly introduced - smelting and extraction using sulfuric acid. Pupils will then be given a set of information on these processes and will need to answer a set of questions, once complete pupils can self-assess their work using the answers provided. The next part of the lesson will require pupils to undertake a practical investigation whereby they will extract copper from an ore called malachite, an ore which contains copper carbonate. Students will need to follow the instructions provided and will then need to note down their observations of the electrode at which the copper will collect. A summary and explanation of the results will then be provided via the PowerPoint presentation for pupils to check their work. Lastly, pupils will watch a video about low-grade copper ores and the processes of phytomining and bioleaching for the extraction of copper from such ores. Pupils will need to answer a set of questions whilst watching this video, this work can be self-assessed using the mark scheme provided. The plenary task is for pupils to write a list of key words from what they have learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Metabolism and the liver
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Metabolism and the liver

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by identifying what metabolic rate is and then asking pupils to think about what important metabolic reactions take place within organisms. Pupils can discuss and try and come up with a brain storm in their books. Pupils then learn about the role of the liver by watching a video and answering questions at the same time, once pupils have finished completing this task they can assess their work using the answers provided on the PowerPoint slide. Next, pupils need to specifically learn about the role of the liver in clearing lactic acid from the body. They will be given an information card and will need to answer some questions using this information, once finished they can mark or peer assess their work. The final activity is an exam-style question about glycogen in the liver, pupils can answer this question in silence at the back of their books (for higher abilities this would be most suitable) or for lower abilities you may allow them to discuss and answer in pairs. Once completed they can mark their worn work. The plenary activity is a list of answers, pupils need to come up with the questions to which these words are the answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Mitosis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Mitosis

(2)
This is a resource which meets specification points within the NEW AQA GCSE Trilogy 'Cells' Sow. Other lessons designed for the new 'Cells' SoW and other new Trilogy Biology and Physics SoW can be found in my TES shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by identifying the purpose of mitosis - growth and repair. Pupils will then be given a double-sided worksheet, the first side corresponds to the first 5 mins 51 seconds of the video included in the PowerPoint slide. Pupils will need to watch the video and answer the questions on the sheet, they are in order but for lower ability classes you may want to stop the video and guide pupils through the work. Self-assess this work using the answers provided in the PowerPoint before moving on with the video. The next part of the video guides pupils through what happens during Mitosis - Prophase, Metaphase, Anaphase, Telophase. Pupils have diagrams of the the processes on the back of their worksheet, they will need to use the video to name the stages and describe what is happening. Self-assess work using the answers that are provided in the PowerPoint. The next activity, pupils are given real images of a cell going through mitosis and descriptions of the stages, they need to cut and stick the stages and the pictures in the correct order to complete a flow diagram. Pupils peer or self-assess their work using red/green pens. **Past-paper question provided as an extra activity for higher-ability pupils - pupils answer the question in their books and peer-assess using the mark scheme** Plenary - pupils write a text message or a tweet to their friend to tell them what they have learnt about this lesson. All resources are included, as well as mark schemes for when pupils self/peer-assess their work. Please leave a review with feedback :) thanks!
KS3 ~ Year 7 ~ Waves
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Waves

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly be introduced to the main features of a wave - amplitude, frequency and wavelength. Students can sketch a diagram of a wave into their books and take notes on the main features. Students are now introduced to transverse and longitudinal waves, students will need to know the differences between the direction of the oscillations of these two waves. Students are then asked to discuss how a ‘slinky’ could be used to demonstrate these two waves, after a short class discussion students can be shown an animation to demonstrate how a slinky shows these two types of wave. Students will now get into groups and come up with a short role-play to demonstrate the differences between these two waves. Students will now complete a progress check where they will need to copy and complete a paragraph to summarise what they have learned so far this lesson. This task can then be self-assessed using the mark scheme provided. A diagram of a longitudinal wave which shows the differences between rarefactions and compressions is shown to students, they will then need to answer a set of questions. The answers to this task are included in the PowerPoint so students can self-assess their work once it is complete. Next, students will need to ‘Think > Pair > Share’ their ideas about what happens when two or more waves join together. Students can discuss their ideas first before being shown a video demonstrating the process of superposing waves. Students will then complete a fill-in-the-blank task to summarise what they have learned this lesson. The plenary task requires students to write a WhatsApp message to tell their friends what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology – Feeding Relationships
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – Feeding Relationships

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a PowerPoint slide which demonstrates how sunlight falling on plants is the initial source of energy for all living organisms. This moves on to a video which outlines the key terms related to food chains, pupils will be provided with a set of questions which they will need to answer using the video. Once pupils has completed this task pupils they can self-assess their work using the mark scheme provided. Pupils will then be shown an example of a food chain and the PowerPoint slide will reiterate what the video outlined, about what a food chain and the arrow in the food chains demonstrates. Pupils will then need to complete a task where they match key terms to their definitions and examples. This work can assessed once the task is complete. The next part of the lesson will focus on animal populations and dynamics. The first task pupils will be given a set of questions about the impact of various changes on animal populations (i.e. predator numbers, disease). In groups/pairs they will be given a piece of A3 paper and they will need to answer the questions as best they can. Pupils can then check their answers against the answers provided in the PowerPoint presentation. Pupils will then be given a food web and asked a set of questions about how various changes in the numbers of organisms within the food web would impact others, again this work can be self-assessed. The final activity is for pupils to draw a graph to represent data on the numbers of coyote and jack rabbits over the course of twenty years, pupils will then need to answer questions about this data. The plenary task is for pupils to complete a food chain choosing from a set of organisms provided on the PowerPoint slide, as an extra challenge pupils could try and complete their own food webs. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Variation
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Variation

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students given some pictures of a range of people that look differently to one another, students will need to think > pair > share what the differences are between these people and the reasons why they look different to each other. Pupils will then be introduced to the difference between examples of inherited and environmental characteristics. Firstly pupils will focus on inherited characteristics, the students will need to complete a mind map in their books of the traits they have inherited from their parents (or from grandparents). As an extra challenge pupils can consider why they do not look identical to either parent. The next task will focus on environmental characteristics, pupils will need to draw a table in their books and they will need to sort examples of environmental factors with the type of environmental variation they cause into the table correctly. This work can be self-assessed once it is is complete using the answers provided. For the next activity pupils will be given a card sort of different examples of variation, e.g. height, freckles, eye colour, tattoos. Pupils will need to sort these cards into a Venn diagram in their books - just inherited variation, just environmental variation or potentially caused by both. This work can be self-assessed once it is complete. The next part of the lesson focuses on types of data - continuous or discontinuous. Pupils are firstly shown the difference between the two and then they will need to complete a worksheet to assess their understanding on this. Once completed the worksheet can be self or peer assessed. The final task is for pupils to get into teams (or be sorted by the teacher into teams) and they work their way around the room filling in information about themselves for different types of traits (e.g. handedness, foot length, whether they can roll their tongue). Pupils will assigned one trait each and will need to produce a graph of the class results. This will test their understanding of continuous vs. discontinuous data and how this should be represented in a graph format. The plenary task is for pupils to consider a world where there was no variation and discuss the advantages and disadvantages of this world, trying to use some of the key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW Trilogy AQA GCSE (2016) Biology - Specialised Cells Lesson
SWiftScienceSWiftScience

NEW Trilogy AQA GCSE (2016) Biology - Specialised Cells Lesson

(1)
This is a lesson aimed at meeting specification points within the new AQA GCSE (2016) Biology 'Cells' SoW. For more resources aimed for the new AQA GCSE specification please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start by looking at the differences between unicellular and multicellular oganisms and what it means for a cell to be 'specialised'. Pupils will then focus on the difference between stem cells in animal and plant cells, they will read a bit of information on this topic and answer questions in their books. Pupils can then peer-assess their work using the answers in the PowerPoint. In the next task Pupils can either use posters places around the room or they each get given a different card with a different specialised cell and they need to complete a table of information on the structure and function of various specialised cells. These include: palisade cell, white blood cell, nerve cell, red blood cell, ciliated epithelial cell, sperm and egg cell. The last activity pupils will need to complete a past-paper question to assess their knowledge. Pupils can then self-assess their work using the mark scheme provided. All resources are included, please review with any feedback :)
KS3 ~ Year 8 ~ Continuous and Discontinuous Variation
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Continuous and Discontinuous Variation

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.3 unit on Adaptation & Inheritance. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a whole-class task for students to carry out, firstly they are asked to organise themselves according eye colour, then gender and then lastly height. After they have completed this task, students will be asked to ‘Think > Pair > Share’ their ideas about the way in which they organised themselves for these different categories. How did they differ from on another? This leads into an introduction to continuous and discontinuous variation. Firstly, students are introduced to the idea of discontinuous variation as being a type of variation which can be categorised into distinct groups - e.g. eye colour/gender. Secondly, students are introduced to the idea of continuous variation as being a characteristic which can take any value within a range, e.g. height. Students will now be organised into groups and each group will be assigned a characteristic - e.g. handedness, arm length etc. In their groups students will need to complete a survey of the class to collect data from at least 20 people. Once this is complete, students are asked to consider which of the characteristics they have surveyed are examples of continuous variation and which are discontinuous variation. The answers to this task will then be revealed using the answers provided on the PowerPoint presentation. The next part of the lesson focuses on how students should plot graph displaying either continuous or discontinuous variation - histogram and bar chart, respectively. Now students will need to go back to their groups, using the data collected on their characteristic they surveyed they will now need to produce their own graph. Lastly, students will need to complete a worksheet which will assess their knowledge of what they have learned this lesson. This work can the be self-assessed using the mark scheme provided once the task is complete. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > pair > share task asking pupils to consider the different ways in which males, females or both could potentially find difficulty in conceiving a baby. Images are shown in order to prompt students to think about the anatomy of the male and female reproductive system. Answers will then be provided, pupils can check their ideas against those shown on the PowerPoint slide and red-pen their work. The next task is a fill-in-the-blank task on the role of FSH and LH during fertility treatments, pupils will need to consider the job of these two hormones in a healthy woman (covered during the menstrual cycle lesson) and then summarise how these hormones are used in fertility drugs. This work can be assessed using the answers provided once complete. The next part of the lesson focuses on how in vitro fertilisation works, pupils will be shown diagrams and descriptions of the stages involved with this process. Extra challenge questions are provided at the bottom of the worksheet should some students complete their work quickly. Pupils will then need to complete a worksheet o summarise these steps, once completed this work can be assessed using the mark schemes provided. Finally, students will need to consider the advantages and disadvantages of IVF. They will be given some information, one between two, they will need to use this information to summarise the pro's and con's of IVF. For the last task pupils will be given opinion cards in groups, they should read out the opinion cards and discuss which one's they agree with and why. They should then write a conclusion of their own opinions on IVF in their books, using as many valid scientific points as possible. The plenary task is for pupils to write a twitter message about what they have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA A-Level Biology - Carbohydrates (Mono, di, poly)
SWiftScienceSWiftScience

NEW (2016) AQA A-Level Biology - Carbohydrates (Mono, di, poly)

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a ‘Carbohydrates’ true or false activity, students can answer these questions on their mini whiteboards. This will give you an understanding of knowledge attained at GCSE level on this topic. Students are then introduced to the differences between monosaccharides and discaccharides, and provided with examples of sugars in each of these categories. Students are also introduced to the differences between hydrolysis and condensation reactions, they can have a go at drawing examples of these reactions using the mini whiteboards. After this section of the lesson, students will sort statements into two columns - either describing a condensation or a hydrolysis reaction. Students are also introduced to the three polysaccharides - starch, glycogen and cellulose - but we will cover these carbohydrates in more details in another lesson. Students are shown the test for reducing and non-reducing sugars, they need to be able describe the steps involved with both these food tests, as well as state the positive result for each test. The last part of the lesson focuses on assessment, students will firstly answer a set of questions about what they have learned this lesson. This task can then be self-assessed using the mark scheme provided. Lastly, students will complete an exam question on this topic, which they can then swap with their partner to peer-assess. The plenary task requires students to summarise what they have learned in 3 facts, 3 key words and with 1 question posed to their peers. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) - The menstrual cycle
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) - The menstrual cycle

(8)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished. Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. **For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams**. To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation. The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Biology lesson - Fungal & Protist Diseases
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Biology lesson - Fungal & Protist Diseases

(3)
This is a resource for the new AQA GCSE Biology ‘Infection and Response’ module. The lesson begins with an introduction to the structure of fungi and protists and some of the diseases they can cause in plants and animals. Pupils can then stick a piece of information in their books which outlines the rose black spot fungal disease of plants and the protist disease of malaria in humans. Pupils should use this information to work their way through the levelled tasks on the board. You can then go through the answers to these questions and pupils can self-assess or peer-asses their work. The mid-lesson progress check is an activity where pupils match definitions to the correct key words, pupils can self-assess their work. In the next activity pupils can create a pamphlet/poster aimed at patients going abroad to a country where they could be at risk of contracting malaria. Pupils can work through the tasks for each of the parts of the ABCD approach in order to complete this poster. Pupils can then peer-assess their work. Plenary is a quick quiz pupils can complete at the back of their books. Other lessons from the ‘Infection and Response’ unit can be found in my TES shop. Thanks :)
OCR GCSE (9-1) Biology - Prokaryotic Cells
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Prokaryotic Cells

(0)
This is a lesson aimed at the new OCR GCSE Gateway Science B1 - ‘Cell-level systems’ SoW. The lesson begins by identifying examples of prokaryotic and eukaryotic cells, pupils can begin to think about the structural differences between these two types of cells. Next, pupils are given a worksheet plus an additional card of information on either the structure or function of a bacteria cell. Pupils will need to walk around the room and trade the information on their card with others to fully complete a labelled diagram of a bacteria cell and descriptions of the functions for each structure. Once completed pupils can peer or self-assess their work using the information within the PowerPoint slide. The next activity requires pupils to apply their knowledge of the structure of bacteria (prokaryotic) cells and compare this to the structure of eukaryotic cells, pupils need to construct a list/table in their books to identify the similarities and differences between these two cells. Pupils can then self-assess their work against the list provided in the PowerPoint slide. The next activity is an assessment activity, pupils will need to complete the past-paper question in their books and again self/peer-assess their work using red pens. The final activity involves a list of ‘True/False’ statements, to gauge the progress of the class this could be completed by students holding up red/amber/green cards to identify whether they think the statement is true or false. All resources are included in the PowerPoint presentation, please review to provide me with feedback :). Thank you.
NEW AQA Trilogy GCSE (2016) Biology - Transport in plants
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Transport in plants

(4)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures. Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants. The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint. Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work. The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them. The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge! Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task. All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
NEW AQA GCSE (2016) Physics - Internal Energy
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Internal Energy

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a ‘Think > Pair > Share’ activity which requires pupils to recall the properties of a solid, liquid and gas. Once students have discussed this amongst themselves and as a class, they will then complete a fill-in-the-blank task to summarise the properties and the arrangement of particles of a solids, liquids and gases. Once this task has been completed students can self-assess their work suing the mark scheme included. Students will now be introduced to the idea of potential energy and internal energy, a video will then be shown and students will have to answer a set of questions. This work can then be self-assessed using the answers included in the PowerPoint. This then follows into a mid-lesson plenary, pupils will answer an exam question and then peer-assess their work. Next, students will study the different levels of forces of attraction between particles found in solids, liquids and gases. Their knowledge of what they have learned so far this lesson can then be checked using a summary worksheet, students complete their own worksheet, the answers to this are included in the PowerPoint for students to mark their work once complete. Lastly, students will carry out a ‘True or False’ task. The plenary task requires pupils to complete a 3-3-1 summary: 3 facts, 3 key words and 1 question to test their peers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Glass, ceramics & composites
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Glass, ceramics & composites

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly given a set of different objects on their desks and they are also provided with a list of properties, for each object students need to use the words from the list provided to identify the object’s properties. This work can be self-assessed using the mark scheme provided. The next task for pupils to complete is an ‘Each one, teach one’ task - in pairs, pupils are either given information about glass or ceramics, they need to learn the information and teach each other so they are able to complete a table of information on both. This work can then be peer or self-assessed using the mark scheme provided. Next, pupils will watch a video about different composite materials - they will need to answer a set of questions whilst watching the video and this can be marked using the mark scheme provided. The next activity is for pupils to investigate the differences between reinforced concrete vs. normal concrete. Finally, students will complete a ‘Quick Check’ activity - pupils will need to answer a set of questions to summarise what they have learned this lesson. This work can be self-assessed using the mark scheme provided. The plenary activity requires pupils to write a Whatsapp message to their friends outlining what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Using plant hormones HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Using plant hormones HT

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly be introduced to two further hormones in addition to auxin: gibberellins and ethene. The first task is for pupils to watch a video on the role of auxins and gibberellins in plant growth and development. Pupils will answer questions whilst watching the video and then self-assess their work using the mark scheme provided. Once pupils understand how gibberellins and auxins work they are asked to think > pair > share how these two hormones might be utilised by farmers/gardeners to help increase yield. Pupils can come up with a mind map in their books of their ideas. The next activity is another video, this one is on the uses of hormones in horticulture and agriculture. Pupils are asked to answer questions whilst watching the video, this work can again be self-assessed using the mark scheme provided. Pupils will then be given an information sheet on plant hormones, outlining further roles of auxin and gibberellins and also the role of ethene. Pupils will need to answer questions using this information. The final activity is a true/false task on the topics of plant hormones. The plenary task is for pupils to write a text message to their friends outlining what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)