Hero image

Paperfriendlyresources's Shop

Follow paper friendly resources on instagram: Paperfriendlyresourcesuk These resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet. For general enquiries or support please email: Paperfriendlyresources@gmail.com

289Uploads

144k+Views

80k+Downloads

Follow paper friendly resources on instagram: Paperfriendlyresourcesuk These resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet. For general enquiries or support please email: Paperfriendlyresources@gmail.com
AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2

(1)
Photosynthesis required practical (RP 6). This practical was completed in one lesson, students were asked to construct a graph from their data for homework. AQA spec link: 4.4.1.1 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 126-127 Students are required to know the following; investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. AT skills covered by this practical activity: AT 1, 2, 3, 4 and 5.
AQA new specification-Selective breeding-B13.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Selective breeding-B13.3

(1)
Selective breeding lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.3 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 182-183. Students are required to know the following; Students should be able to explain the impact of selective breeding of food plants and domesticated animals. Selective breeding (artificial selection) is the process by which humans breed plants and animals for particular genetic characteristics. Humans have been doing this for thousands of years since they first bred food crops from wild plants and domesticated animals. Selective breeding involves choosing parents with the desired characteristic from a mixed population. They are bred together. From the offspring those with the desired characteristic are bred together. This continues over many generations until all the offspring show the desired characteristic. The characteristic can be chosen for usefulness or appearance: • Disease resistance in food crops. • Animals which produce more meat or milk. • Domestic dogs with a gentle nature. • Large or unusual flowers. Selective breeding can lead to ‘inbreeding’ where some breeds are particularly prone to disease or inherited defects. WS 1.3, 1.4 Explain the benefits and risks of selective breeding given appropriate information and consider related ethical issues.
AQA new specification-Genetic engineering B13.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Genetic engineering B13.4

(1)
Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 184-185. Students are required to know the following; Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic. Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits. Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes. Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms. Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored. Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders. (HT) Students should be able to describe the main steps in the process of genetic engineering. In genetic engineering: • enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus • the vector is used to insert the gene into the required cells • genes are transferred to the cells of animals, plants, or microorganisms at an early stage (egg or embryo) in their development so that they develop with desired characteristics.
AQA new specification-Ethics of genetic technologies-B13.5
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Ethics of genetic technologies-B13.5

(1)
Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 186-187. Students are required to know the following; Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored.
AQA new specification-Aerobic respiration-B9.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Aerobic respiration-B9.1

(1)
Aerobic respiration lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.2.1 Relevant chapter: B9 Respiration. AQA Biology third edition textbook-Page 134-135 Students are required to know the following; Students should be able to describe cellular respiration as an exothermic reaction which is continuously occurring in living cells. The energy transferred supplies all the energy needed for living processes. Respiration in cells can take place aerobically (using oxygen) or anaerobically (without oxygen), to transfer energy. Students should be able to compare the processes of aerobic and anaerobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred. Organisms need energy for: •• chemical reactions to build larger molecules •• movement •• keeping warm. Aerobic respiration is represented by the equation: glucose + oxygen carbon dioxide + water Students should recognise the chemical symbols: C6H12O6, O2, CO2 and H2O.
AQA new specification-B13 Variation and evolution-Combined/Additional science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B13 Variation and evolution-Combined/Additional science bundle

5 Resources
This bundle only contains the content for COMBINED/ADDITIONAL science students. It includes the B13 unit-Variation and evolution. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 20% by purchasing this bundle :) Total = 5 lessons These lessons are suitable to teach separate science but they have 3 extra topics to learn. Lesson 1-Variation Lesson 2-Evolution by natural selection Lesson 3-Selective breeding Lesson 4-Genetic engineering Lesson 5-Ethics of genetic technologies Good luck with your lessons :)
AQA new specification-Antibiotic resistant bacteria-B15.8
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Antibiotic resistant bacteria-B15.8

(1)
Antibiotic resistant bacteria lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.7 Relevant chapter: B15 Genetics and evolution. AQA Biology Third edition textbook-Page 248-249 Students are required to know the following; Bacteria can evolve rapidly because they reproduce at a fast rate. Mutations of bacterial pathogens produce new strains. Some strains might be resistant to antibiotics, and so are not killed. They survive and reproduce, so the population of the resistant strain rises. The resistant strain will then spread because people are not immune to it and there is no effective treatment. MRSA is resistant to antibiotics. To reduce the rate of development of antibiotic resistant strains: • doctors should not prescribe antibiotics inappropriately, such as treating non-serious or viral infections • patients should complete their course of antibiotics so all bacteria are killed and none survive to mutate and form resistant strains •the agricultural use of antibiotics should be restricted. The development of new antibiotics is costly and slow. It is unlikely to keep up with the emergence of new resistant strains.
Pearson BTEC-Applied science-UNIT 2D-Assignment template
PaperfriendlyresourcesPaperfriendlyresources

Pearson BTEC-Applied science-UNIT 2D-Assignment template

(1)
Unit 2-Practical scientific procedures and techniques Learning aim D: Review personal development of scientific skills for laboratory work. How did i teach this? This assignment allows students to review the skills they attained in this unit. It also reiterates the importance of H&S as well as professional practice. Before setting the assignment i first taught three lessons covering the content in Pearson BTEC national-Applied science-Student book 1. Due to the complexity of this assignment i provided my students with a template which covered the P/M/D criteria (please see attached). This prevented students from going off on a tangent and also ensured they had mentioned the key skills for both assignment B and C. I’ve also attached a specification and the assignment brief to tie it altogether nicely. Hope it helps you with marking also!
AQA new specification-DNA and the genome-B12.3 TRILOGY
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-DNA and the genome-B12.3 TRILOGY

(4)
DNA and the genome lesson created in accordance to the NEW AQA Specification (9-1). Designed for a TRILOGY class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides as well as a quiz. AQA spec link: 6.1.4 Relevant chapter: B13 Genetics and reproduction. AQA trilogy textbook-Page 166-167. Specification requires students to know the following; Students should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes. A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future. Students should be able to discuss the importance of understanding the human genome. This is limited to the: • search for genes linked to different types of disease • understanding and treatment of inherited disorders • use in tracing human migration patterns from the past
AQA new specification-Preventing infections-B5.5
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Preventing infections-B5.5

(3)
This lesson has been created in accordance to the NEW AQA Specification (9-1) for my combined/additional science class (Year 9-KS4). Includes: slide animations, embedded videos, differentiated questions and answers have also been included within the slides. This resource is suitable for separate science students. AQA spec link: 4.3.1.1 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 82-83. *The new specification requires students to know the following; Explain how the spread of diseases can be reduced or prevented.
AQA new specification-Inherited disorders-B12.6-TRILOGY
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Inherited disorders-B12.6-TRILOGY

(3)
Inherited disorders lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability TRILOGY class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides as well as a quiz. This lesson in particular by students because of the real life implications of genetics. Students particularly enjoyed the cystic fibrosis video. I'd appreciate a review after your lesson :) AQA spec link: 6.1.7 Relevant chapter: B13 Genetics and reproduction. AQA trilogy textbook-Page 172-173.
AQA new specification-Distribution and abundance-B15.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Distribution and abundance-B15.3

(2)
Distribution and abundance lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.2.1 Relevant chapter: B15 Adaptations, interdependence and competitions. AQA Biology combined edition textbook-Page 210-211 Students are required to know the following; A range of experimental methods using transects and quadrats are used by ecologists to determine the distribution and abundance of species in an ecosystem. In relation to abundance of organisms students should be able to: • understand the terms mean, mode and median •calculate arithmetic means
AQA new specification-Diet, exercise and disease-B7.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Diet, exercise and disease-B7.4

(2)
Diet, exercise and disease lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.2.2.6 Relevant chapter: B7 Non-communicable diseases. AQA Biology combined textbook-Page 104-105 Students are required to know the following; • discuss the human and financial cost of these non-communicable diseases to an individual, a local community, a nation, or globally • explain the effect of lifestyle factors including diet, alcohol, and smoking on the incidence of non-communicable diseases at local, national, and global levels. Risk factors are linked to an increased rate of a disease. They can be: • aspects of a person’s lifestyle • substances in the person’s body or environment. A causal mechanism has been proven for some risk factors, but not in others. • The effects of diet and exercise on cardiovascular disease. • Obesity as a risk factor for Type 2 diabetes. Many diseases are caused by the interaction of a number of factors. Students should be able to understand the principles of sampling as applied to scientific data in terms of risk factors. Students should be able to translate information between graphical and numerical forms; and extract and interpret information from charts, graphs and tables in terms of risk factors. Students should be able to use a scatter diagram to identify a correlation between two variables in terms of risk factors.
Pearson BTEC New specification-Applied science-Unit 1-Stationary waves and resonance-C1
PaperfriendlyresourcesPaperfriendlyresources

Pearson BTEC New specification-Applied science-Unit 1-Stationary waves and resonance-C1

(2)
Stationary waves and resonance lesson created in accordance to the Pearsons BTEC national specification for applied science. This is the seventh lesson in the physics C1 working with waves topic. *NB: This resource has been edited and now includes 3 more slides on resonance + uses* The new specification requires students to sit an externally assessed examination in January. Includes slide animations, embedded videos (incl. URL in slide notes) practice questions with answers on slides and real world applications. Relevant chapter: Principles and applications of science. Pearson Applied science (Student 1) textbook-Page 69-70 The following areas have been covered from the specification in this lesson. C1 Working with waves -Understand the concept and applications of stationary waves resonance.
AQA new specification-Variation-B14.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Variation-B14.1

(2)
Variation lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. AQA spec link: 4.6.2.1 Relevant chapter: B14 Variation and evolution. AQA Biology third edition textbook-Page 218-219. Students are required to know the following; Students should be able to describe simply how the genome and its interaction with the environment influence the development of the phenotype of an organism. Differences in the characteristics of individuals in a population is called variation and may be due to differences in: • the genes they have inherited (genetic causes) • the conditions in which they have developed (environmental causes) • a combination of genes and the environment. NB: Mutations reference will be taught in the subsequent lesson.
AQA new specification-Pathogens and disease-B5.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Pathogens and disease-B5.2

(2)
Health and disease lesson created in accordance to the NEW AQA Specification (9-1) for my combined/additional science class (Year 9-KS4). Includes: slide animations, embedded video, worksheets and practice questions with answers. This resource is suitable for separate science students. AQA spec link: 4.3.1.1 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 76-77. *The new specification requires students to know the following; Students should be able to explain how diseases caused by viruses, bacteria, protists, and fungi are spread in animals and plants. Pathogens are microorganisms that cause infectious disease. Pathogens may be viruses, bacteria, protists, or fungi. They may infect animals and can be spread by direct contact, by water, or by air. Bacteria and viruses may reproduce rapidly inside the body. Bacteria may produce poisons (toxins) that damage tissues and make us feel ill. Viruses live and reproduce inside cells, causing cell damage.
AQA new specification-How plants use glucose-B8.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-How plants use glucose-B8.3

(2)
How plants use glucose lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's, practice questions, peer assessment worksheet and mini review. *Top paper friendly tip: the information in the 'How to use glucose' worksheet can also be found in the textbook therefore isn't required to be printed.* NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.1.3 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 128-129 Students are required to know the following; The glucose produced in photosynthesis may be: •• used for respiration •• converted into insoluble starch for storage •• used to produce fat or oil for storage •• used to produce cellulose, which strengthens the cell wall •• used to produce amino acids for protein synthesis. To produce proteins, plants also use nitrate ions that are absorbed from the soil. AT 8-Tests to identify starch, glucose and proteins using simple qualitative reagents
AQA new specification-Reduce, reuse and recycle-C12.6
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Reduce, reuse and recycle-C12.6

(1)
C12-Using Earths resources-Reduce, reuse and recycle lesson created in accordance to the NEW AQA Specification (9-1). Designed for a mixed ability year 11 class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides as well as a interactive review task. If for any reason the video link does not work, a URL has also been included in the notes. NB: an article has been attached for those students who are really intrested in the statistics, a great stretch and challenge activity. AQA spec link: 4.10.2.2
AQA new specification-Adapt and survive-B16.6
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Adapt and survive-B16.6

(1)
Adapt and survive lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.1.4 Students should be able to explain how organisms are adapted to live in their natural environment, given appropriate information. Organisms have features (adaptations) that enable them to survive in the conditions in which they normally live. These adaptations may be structural, behavioural, or functional. Some organisms live in environments that are very extreme, such as at high temperature, pressure, or salt concentration. These organisms are called extremophiles. Bacteria living in deep sea vents are extremophiles.
AQA new specification-Evolution and speciation-B15.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Evolution and speciation-B15.4

(1)
Evolution and speciation lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.2 Relevant chapter: B15 Genetics and evolution. AQA Biology trilogy edition textbook-Page 240-241 Students are required to know the following; Students should be able to: • describe the work of Darwin and Wallace in the development of the theory of evolution by natural selection • explain the impact of these ideas on biology. Alfred Russel Wallace independently proposed the theory of evolution by natural selection. He published joint writings with Darwin in 1858 which prompted Darwin to publish On the Origin of Species (1859) the following year. Wallace worked worldwide gathering evidence for evolutionary theory. He is best known for his work on warning colouration in animals and his theory of speciation. Alfred Wallace did much pioneering work on speciation but more evidence over time has led to our current understanding of the theory of speciation. Students should be able to describe the steps which give rise to new species. WS 1.1 The theory of speciation has developed over time