AQA new specification-Evidence for evolution-B14.1

AQA new specification-Evidence for evolution-B14.1

Evidence for evolution lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.4 Relevant chapter: B14 Genetics and evolution. AQA Biology trilogy edition textbook-Page 190-191 Students are required to know the following; Students should be able to describe the evidence for evolution including fossils and antibiotic resistance in bacteria. The theory of evolution by natural selection is now widely accepted. Evidence for Darwin’s theory is now available as it has been shown that characteristics are passed on to offspring in genes. There is further evidence in the fossil record and the knowledge of how resistance to antibiotics evolves in bacteria.
Paperfriendlyresources
AQA new specification-Fossils and extinction-B14.2

AQA new specification-Fossils and extinction-B14.2

Fossils and extinction lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.5 Relevant chapter: B14 Genetics and evolution. AQA Biology trilogy edition textbook-Page 192-193 Students are required to know the following; Fossils are the ‘remains’ of organisms from millions of years ago, which are found in rocks. Fossils may be formed: • from parts of organisms that have not decayed because one or more of the conditions needed for decay are absent • when parts of the organism are replaced by minerals as they decay •as preserved traces of organisms, such as footprints, burrows and rootlet traces. Many early forms of life were soft-bodied, which means that they have left few traces behind. What traces there were have been mainly destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth. WS 1.3 Appreciate why the fossil record is incomplete.
Paperfriendlyresources
AQA new specification-Fossils and extinction-B15.2

AQA new specification-Fossils and extinction-B15.2

Fossils and extinction lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.5 Relevant chapter: B14 Genetics and evolution. AQA Biology third edition textbook-Page 224-245 Students are required to know the following; Fossils are the ‘remains’ of organisms from millions of years ago, which are found in rocks. Fossils may be formed: • from parts of organisms that have not decayed because one or more of the conditions needed for decay are absent • when parts of the organism are replaced by minerals as they decay •as preserved traces of organisms, such as footprints, burrows and rootlet traces. Many early forms of life were soft-bodied, which means that they have left few traces behind. What traces there were have been mainly destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth. WS 1.3 Appreciate why the fossil record is incomplete.
Paperfriendlyresources
AQA new specification-Evidence for evolution-B15.1

AQA new specification-Evidence for evolution-B15.1

Evidence for evolution lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.4 Relevant chapter: B15 Genetics and evolution. AQA Biology third edition textbook-Page 242-243 Students are required to know the following; Students should be able to describe the evidence for evolution including fossils and antibiotic resistance in bacteria. The theory of evolution by natural selection is now widely accepted. Evidence for Darwin’s theory is now available as it has been shown that characteristics are passed on to offspring in genes. There is further evidence in the fossil record and the knowledge of how resistance to antibiotics evolves in bacteria.
Paperfriendlyresources
AQA new specification-Aerobic respiration-B9.1

AQA new specification-Aerobic respiration-B9.1

Aerobic respiration lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.2.1 Relevant chapter: B9 Respiration. AQA Biology third edition textbook-Page 134-135 Students are required to know the following; Students should be able to describe cellular respiration as an exothermic reaction which is continuously occurring in living cells. The energy transferred supplies all the energy needed for living processes. Respiration in cells can take place aerobically (using oxygen) or anaerobically (without oxygen), to transfer energy. Students should be able to compare the processes of aerobic and anaerobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred. Organisms need energy for: •• chemical reactions to build larger molecules •• movement •• keeping warm. Aerobic respiration is represented by the equation: glucose + oxygen carbon dioxide + water Students should recognise the chemical symbols: C6H12O6, O2, CO2 and H2O.
Paperfriendlyresources
Pearson BTEC New specification-Applied science-Unit 1-Musical instruments-C1

Pearson BTEC New specification-Applied science-Unit 1-Musical instruments-C1

Musical instruments lesson created in accordance to the Pearsons BTEC national specification for applied science. This is the final lesson in the physics C1 working with waves topic. The new specification requires students to sit an externally assessed examination in January. Includes slide animations, embedded videos (incl. URL in slide notes) practice questions with answers on slides and real world applications. Relevant chapter: Principles and applications of science. Pearson Applied science (Student 1) textbook-Page 70- The following areas have been covered from the specification in this lesson. C1 Working with waves -Understand the concept and applications of stationary waves resonance. Musical instruments. Be able to use the equation: calculation of speed
Paperfriendlyresources
AQA new specification-Genetic engineering B13.4

AQA new specification-Genetic engineering B13.4

Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 184-185. Students are required to know the following; Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic. Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits. Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes. Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms. Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored. Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders. (HT) Students should be able to describe the main steps in the process of genetic engineering. In genetic engineering: • enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus • the vector is used to insert the gene into the required cells • genes are transferred to the cells of animals, plants, or microorganisms at an early stage (egg or embryo) in their development so that they develop with desired characteristics.
Paperfriendlyresources
AQA new specification-Ethics of genetic technologies-B13.5

AQA new specification-Ethics of genetic technologies-B13.5

Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 186-187. Students are required to know the following; Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored.
Paperfriendlyresources
AQA new specification-B13 Variation and evolution-Combined/Additional science bundle

AQA new specification-B13 Variation and evolution-Combined/Additional science bundle

This bundle only contains the content for COMBINED/ADDITIONAL science students. It includes the B13 unit-Variation and evolution. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 20% by purchasing this bundle :) Total = 5 lessons These lessons are suitable to teach separate science but they have 3 extra topics to learn. Lesson 1-Variation Lesson 2-Evolution by natural selection Lesson 3-Selective breeding Lesson 4-Genetic engineering Lesson 5-Ethics of genetic technologies Good luck with your lessons :)
Paperfriendlyresources
AQA new specification-Ethics of genetic technologies-B14.7

AQA new specification-Ethics of genetic technologies-B14.7

Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology third edition textbook-Page 230-231. Students are required to know the following; Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored.
Paperfriendlyresources
AQA new specification-Genetic engineering B14.4

AQA new specification-Genetic engineering B14.4

Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology third edition textbook-Page 224-225. Students are required to know the following; Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic. Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits. Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes. Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms. Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored. Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders. (HT) Students should be able to describe the main steps in the process of genetic engineering. In genetic engineering: • enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus • the vector is used to insert the gene into the required cells • genes are transferred to the cells of animals, plants, or microorganisms at an early stage (egg or embryo) in their development so that they develop with desired characteristics.
Paperfriendlyresources
AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2

AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2

Photosynthesis required practical (RP 6). This practical was completed in one lesson, students were asked to construct a graph from their data for homework. AQA spec link: 4.4.1.1 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 126-127 Students are required to know the following; investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. AT skills covered by this practical activity: AT 1, 2, 3, 4 and 5.
Paperfriendlyresources
AQA new specification-B8 Photosynthesis-Complete bundle

AQA new specification-B8 Photosynthesis-Complete bundle

This bundle includes the B8 unit-Photosynthesis. This is a combined science unit. All lessons have been done in accordance to the specification requirements. Videos have been embedded for ease of use (no internet connection required although URL has also been provided), and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 17% by purchasing this bundle :) Lesson 1-Photosynthesis (introduction) Lesson 2-Rate of photosynthesis Lesson 3-Required practical 6 Lesson 4-How plants use glucose Lesson 5-Making the most of photosynthesis
Paperfriendlyresources
AQA new specification-DNA structure and protein synthesis-B13.5

AQA new specification-DNA structure and protein synthesis-B13.5

DNA structure and protein synthesis lessons created in accordance to the NEW AQA Specification (9-1). NB: BIOLOGY ONLY. I taught this topic in two lessons as it's a topic that's a difficult concept and can be taught effectively as opposed to being rushed. This resource is designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheets and an interactive quiz. AQA spec link: 6.1.5 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 204-205. Students should be able to describe DNA as a polymer made from four different nucleotides. Each nucleotide consists of a common sugar and phosphate group with one of four different bases attached to the sugar. DNA contains four bases, A, C, G and T. A sequence of three bases is the code for a particular amino acid. The order of bases controls the order in which amino acids are assembled to produce a particular protein. The long strands of DNA consist of alternating sugar and phosphate sections. Attached to each sugar is one of the four bases. The DNA polymer is made up of repeating nucleotide units. (HT only) Students should be able to: •• recall a simple description of protein synthesis •• explain simply how the structure of DNA affects the protein made •• describe how genetic variants may influence phenotype: a) in coding DNA by altering the activity of a protein: and b) in non-coding DNA by altering how genes are expressed. (HT only) In the complementary strands a C is always linked to a G on the opposite strand and a T to an A. (HT only) Students are not expected to know or understand the structure of mRNA, tRNA, or the detailed structure of amino acids or proteins. (HT only) Students should be able to explain how a change in DNA structure may result in a change in the protein synthesised by a gene. (HT only) Proteins are synthesised on ribosomes, according to atemplate. Carrier molecules bring specific amino acids to add to the growing protein chain in the correct order. (HT only) When the protein chain is complete it folds up to form a unique shape. This unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen.
Paperfriendlyresources
AQA new specification-Stem cells (introduction)-B2.3

AQA new specification-Stem cells (introduction)-B2.3

Stem cells (introduction) lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded video, practice questions with answers on slides. AQA spec link: 4.1.2.3 Relevant chapter: B2 Cell division. AQA Biology third edition textbook-Page 30-31 Specification requires students to know the following; A stem cell is an undifferentiated cell of an organism which is capable of giving rise to many more cells of the same type, and from which certain other cells can arise from differentiation. Students should be able to describe the function of stem cells in embryos, in adult animals and in the meristems in plants. Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells. Stem cells from adult bone marrow can form many types of cells including blood cells. Meristem tissue in plants can differentiate into any type of plant cell, throughout the life of the plant. Knowledge and understanding of stem cell techniques are not required. Treatment with stem cells may be able to help conditions such as diabetes and paralysis
Paperfriendlyresources
AQA new specification-Inheritance in action-B13.7

AQA new specification-Inheritance in action-B13.7

Inheritance in action lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. AQA spec link: 6.1.6 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 208-209. Students should be able to explain the terms: • gamete • chromosome • gene • allele • dominant • recessive • homozygous • heterozygous • genotype • phenotype. Some characteristics are controlled by a single gene, such as: fur colour in mice; and red-green colour blindness in humans. Each gene may have different forms called alleles. The alleles present, or genotype, operate at a molecular level to develop characteristics that can be expressed as a phenotype. A dominant allele is always expressed, even if only one copy is present. A recessive allele is only expressed if two copies are present (therefore no dominant allele present). If the two alleles present are the same the organism is homozygous for that trait, but if the alleles are different they are heterozygous. Most characteristics are a result of multiple genes interacting, rather than a single gene. Students should be able to understand the concept of probability in predicting the results of a single gene cross, but recall that most phenotype features are the result of multiple genes rather than single gene inheritance. MS 2e Students should be able to use direct proportion and simple ratios to express the outcome of a genetic cross. MS 1c, 3a Students should be able to complete a Punnett square diagram and extract and interpret information from genetic crosses and family trees. MS 2c, 4a (HT only) Students should be able to construct a genetic cross by Punnett square diagram and use it to make predictions using the theory of probability.
Paperfriendlyresources
AQA new specification-Evolution by natural selection-B13.2

AQA new specification-Evolution by natural selection-B13.2

Evolution by natural selection lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.1 + 4.6.2.2 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 180-181. Students are required to know the following; Students should be able to: • state that there is usually extensive genetic variation within a population of a species • recall that all variants arise from mutations and that: most have no effect on the phenotype; some influence phenotype; very few determine phenotype. Mutations occur continuously. Very rarely a mutation will lead to a new phenotype. If the new phenotype is suited to an environmental change it can lead to a relatively rapid change in the species. Students should be able to describe evolution as a change in the inherited characteristics of a population over time through a process of natural selection which may result in the formation of a new species. The theory of evolution by natural selection states that all species of living things have evolved from simple life forms that first developed more than three billion years ago. Students should be able to explain how evolution occurs through natural selection of variants that give rise to phenotypes best suited to their environment. If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.
Paperfriendlyresources
AQA new specification-Selective breeding-B13.3

AQA new specification-Selective breeding-B13.3

Selective breeding lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.3 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 182-183. Students are required to know the following; Students should be able to explain the impact of selective breeding of food plants and domesticated animals. Selective breeding (artificial selection) is the process by which humans breed plants and animals for particular genetic characteristics. Humans have been doing this for thousands of years since they first bred food crops from wild plants and domesticated animals. Selective breeding involves choosing parents with the desired characteristic from a mixed population. They are bred together. From the offspring those with the desired characteristic are bred together. This continues over many generations until all the offspring show the desired characteristic. The characteristic can be chosen for usefulness or appearance: • Disease resistance in food crops. • Animals which produce more meat or milk. • Domestic dogs with a gentle nature. • Large or unusual flowers. Selective breeding can lead to ‘inbreeding’ where some breeds are particularly prone to disease or inherited defects. WS 1.3, 1.4 Explain the benefits and risks of selective breeding given appropriate information and consider related ethical issues.
Paperfriendlyresources
AQA new specification-How plants use glucose-B8.3

AQA new specification-How plants use glucose-B8.3

How plants use glucose lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's, practice questions, peer assessment worksheet and mini review. *Top paper friendly tip: the information in the 'How to use glucose' worksheet can also be found in the textbook therefore isn't required to be printed.* NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.1.3 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 128-129 Students are required to know the following; The glucose produced in photosynthesis may be: •• used for respiration •• converted into insoluble starch for storage •• used to produce fat or oil for storage •• used to produce cellulose, which strengthens the cell wall •• used to produce amino acids for protein synthesis. To produce proteins, plants also use nitrate ions that are absorbed from the soil. AT 8-Tests to identify starch, glucose and proteins using simple qualitative reagents
Paperfriendlyresources
AQA new specification-Variation-B13.1

AQA new specification-Variation-B13.1

Variation lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. AQA spec link: 4.6.2.1 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 178-179. Students are required to know the following; Students should be able to describe simply how the genome and its interaction with the environment influence the development of the phenotype of an organism. Differences in the characteristics of individuals in a population is called variation and may be due to differences in: • the genes they have inherited (genetic causes) • the conditions in which they have developed (environmental causes) • a combination of genes and the environment. NB: Mutations reference will be taught in the subsequent lesson.
Paperfriendlyresources
AQA new specification-Gene expression and mutation-B13.6

AQA new specification-Gene expression and mutation-B13.6

Gene expression and mutation lesson created in accordance to the NEW AQA Specification (9-1). NB: BIOLOGY ONLY-HT. Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides. AQA spec link: 6.1.5 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 206-207. Specification requires students to know the following; (HT only) Mutations occur continuously. Most do not alter the protein, or only alter it slightly so that its appearance or function is not changed. (HT only) A few mutations code for an altered protein with a different shape. An enzyme may no longer fit the substrate binding site or a structural protein may lose its strength. (HT only) Not all parts of DNA code for proteins. Non-coding parts of DNA can switch genes on and off, so variations in these areas of DNA may affect how genes are expressed.
Paperfriendlyresources